On the Density of the Winding Number of Planar Brownian Motion

被引:0
|
作者
Stella Brassesco
Silvana C. García Pire
机构
[1] Instituto Venezolano de Investigaciones Científicas,Departamento de Matemáticas
[2] Universidad Nacional Experimental Simón Rodriguez,undefined
来源
关键词
Planar Brownian motion; Winding number; Transition density; Spitzer’s law; Local limit theorem; Asymptotic expansions; 60J65; 60J60; 58J65;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a formula for the density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta , t)$$\end{document} of the winding number of a planar Brownian motion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_t$$\end{document} around the origin. From this formula, we deduce an expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\log (\sqrt{t})\,\theta ,\,t)$$\end{document} in inverse powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \sqrt{t}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\theta ^2)^{1/2}$$\end{document} which in particular yields the corrections of any order to Spitzer’s asymptotic law (in Spitzer, Trans. Am. Math. Soc. 87:187–197, 1958). We also obtain an expansion for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta ,t)$$\end{document} in inverse powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \sqrt{t}$$\end{document}, which yields precise asymptotics as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document} for a local limit theorem for the windings.
引用
收藏
页码:899 / 914
页数:15
相关论文
共 50 条