A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy

被引:0
|
作者
Akash Malhotra
机构
[1] Jawaharlal Nehru University,Centre for Economic Studies and Planning
来源
Eurasian Economic Review | 2021年 / 11卷
关键词
Econometrics; Machine learning; Relative importance; Food policy; C18; C39; C45; C54;
D O I
暂无
中图分类号
学科分类号
摘要
A measure of relative importance of variables is often desired by researchers when the explanatory aspects of econometric methods are of interest. To this end, the author briefly reviews the limitations of conventional econometrics in constructing a reliable measure of variable importance. The author highlights the relative stature of explanatory and predictive analysis in economics and the emergence of fruitful collaborations between econometrics and computer science. Learning lessons from both, the author proposes a hybrid approach based on conventional econometrics and advanced machine learning (ML) algorithms, which are otherwise, used in predictive analytics. The purpose of this article is two-fold: to propose a hybrid approach to assess relative importance and demonstrate its applicability in addressing policy priority issues with an example of food inflation in India, followed by a broader aim to introduce the possibility of conflation of ML and conventional econometrics to an audience of researchers in economics and social sciences, in general.
引用
收藏
页码:549 / 581
页数:32
相关论文
共 50 条
  • [31] A Hybrid Approach for Intrusion Detection Based on Machine Learning
    Singh, Rohit
    Kalra, Mala
    Solanki, Shano
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, : 187 - 192
  • [32] A hybrid machine learning approach for congestion prediction and warning
    Li, Dongxue
    Hu, Yao
    Wu, Chuliang
    Chen, Wangyong
    Wang, Feiyun
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2025, 48 (02) : 387 - 411
  • [33] A hybrid physics and machine learning approach for velocity prediction
    Liu, Di
    Zou, Changchun
    Song, Qianggong
    Wan, Zhonghong
    Zhao, Haizhen
    Leading Edge, 2022, 41 (06): : 382 - 391
  • [34] Machine Learning Based Hybrid Approach for Credit Assessment
    Guo, Hai
    Shi, Lei
    Zhao, Jingying
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (10) : 1793 - 1797
  • [35] A hybrid machine learning approach for hypertension risk prediction
    Fang, Min
    Chen, Yingru
    Xue, Rui
    Wang, Huihui
    Chakraborty, Nilesh
    Su, Ting
    Dai, Yuyan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14487 - 14497
  • [36] Hybrid machine learning approach for human activity recognition
    Azar, Ahmad Taher
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 72 (03) : 231 - 239
  • [37] Hybrid Machine Learning Approach For Electric Load Forecasting
    Kao, Jui-Chieh
    Lo, Chun-Chih
    Shieh, Chin-Shiuh
    Liao, Yu-Cheng
    Liu, Jun-Wei
    Horng, Mong-Fong
    IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2019, : 1031 - 1037
  • [38] A systematic hybrid machine learning approach for stress prediction
    Ding, Cheng
    Zhang, Yuhao
    Ding, Ting
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [39] A systematic hybrid machine learning approach for stress prediction
    Ding C.
    Zhang Y.
    Ding T.
    PeerJ Computer Science, 2023, 9
  • [40] A hybrid machine learning approach for hypertension risk prediction
    Min Fang
    Yingru Chen
    Rui Xue
    Huihui Wang
    Nilesh Chakraborty
    Ting Su
    Yuyan Dai
    Neural Computing and Applications, 2023, 35 : 14487 - 14497