Optimal Hardy inequalities for Schrödinger operators on graphs

被引:0
|
作者
Matthias Keller
Yehuda Pinchover
Felix Pogorzelski
机构
[1] Universität Potsdam,Institut für Mathematik
[2] Technion-Israel Institute of Technology,Department of Mathematics
[3] Universität Leipzig,Institut für Mathematik
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a given subcritical discrete Schrödinger operator H on a weighted infinite graph X, we construct a Hardy-weight w which is optimal in the following sense. The operator H − λw is subcritical in X for all λ < 1, null-critical in X for λ = 1, and supercritical near any neighborhood of infinity in X for any λ > 1. Our results rely on a criticality theory for Schrödinger operators on general weighted graphs.
引用
收藏
页码:767 / 790
页数:23
相关论文
共 50 条
  • [41] Poisson Eigenvalue Statistics for Random Schrödinger Operators on Regular Graphs
    Leander Geisinger
    Annales Henri Poincaré, 2015, 16 : 1779 - 1806
  • [42] LAPLACE AND SCHRÖDINGER OPERATORS WITHOUT EIGENVALUES ON HOMOGENEOUS AMENABLE GRAPHS
    Grigorchuk, Rostislav
    Pittet, Christophe
    arXiv, 2021,
  • [43] Cwikel-Lieb-Rozenblum type inequalities for Hardy-Schrödinger operator
    Duong, Giao Ky
    Frank, Rupert L.
    Le, Thi Minh Thao
    Nam, Phan Thanh
    Nguyen, Phuoc-Tai
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 190
  • [44] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [45] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [46] Mixed Inequalities for Operators Associated to Critical Radius Functions with Applications to Schrödinger Type Operators
    Fabio Berra
    Gladis Pradolini
    Pablo Quijano
    Potential Analysis, 2024, 60 : 253 - 283
  • [47] Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators
    Abel Klein
    Communications in Mathematical Physics, 2013, 323 : 1229 - 1246
  • [48] OPTIMAL HARDY INEQUALITIES FOR GENERAL ELLIPTIC OPERATORS WITH IMPROVEMENTS
    Cowan, Craig
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (01) : 109 - 140
  • [49] Hardy spaces H1 for Schrödinger operators with compactly supported potentials
    Jacek Dziubański
    Jacek Zienkiewicz
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 315 - 326
  • [50] Optimal Hardy-type inequalities for elliptic operators
    Devyver, Baptiste
    Fraas, Martin
    Pinchover, Yehuda
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 475 - 479