Perfect Fluid Spacetimes and Gradient Solitons

被引:0
|
作者
Krishnendu De
Uday Chand De
Abdallah Abdelhameed Syied
Nasser Bin Turki
Suliman Alsaeed
机构
[1] The University of Burdwan,Department of Mathematics, Kabi Sukanta Mahavidyalaya
[2] University of Calcutta,Department of Pure Mathematics
[3] Zagazig University,Department of Mathematics, Faculty of Science
[4] King Saud University,Department of Mathematics, College of Science
[5] Umm Al-Qura University,Department of Mathematics, Applied Science College
关键词
Perfect fluid spacetimes; Gradient Ricci solitons; Gradient Yamabe solitons; -quasi Einstein solitons; 53C50; 53E20; 53C35; 53E40.;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate perfect fluid spacetimes equipped with concircular vector field. At first, in a perfect fluid spacetime admitting concircular vector field, we prove that the velocity vector field annihilates the conformal curvature tensor. In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid spacetime furnished with concircular vector field admits a second order symmetric parallel tensor P, then either the equation of state of the perfect fluid spacetime is characterized by p=3-nn-1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{3-n}{n-1} \sigma $$\end{document}, or the tensor P is a constant multiple of the metric tensor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorentzian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and gradient m -quasi Einstein solitons, are characterized.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条