Perfect Fluid Spacetimes and Gradient Solitons

被引:0
|
作者
Krishnendu De
Uday Chand De
Abdallah Abdelhameed Syied
Nasser Bin Turki
Suliman Alsaeed
机构
[1] The University of Burdwan,Department of Mathematics, Kabi Sukanta Mahavidyalaya
[2] University of Calcutta,Department of Pure Mathematics
[3] Zagazig University,Department of Mathematics, Faculty of Science
[4] King Saud University,Department of Mathematics, College of Science
[5] Umm Al-Qura University,Department of Mathematics, Applied Science College
关键词
Perfect fluid spacetimes; Gradient Ricci solitons; Gradient Yamabe solitons; -quasi Einstein solitons; 53C50; 53E20; 53C35; 53E40.;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate perfect fluid spacetimes equipped with concircular vector field. At first, in a perfect fluid spacetime admitting concircular vector field, we prove that the velocity vector field annihilates the conformal curvature tensor. In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid spacetime furnished with concircular vector field admits a second order symmetric parallel tensor P, then either the equation of state of the perfect fluid spacetime is characterized by p=3-nn-1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{3-n}{n-1} \sigma $$\end{document}, or the tensor P is a constant multiple of the metric tensor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorentzian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and gradient m -quasi Einstein solitons, are characterized.
引用
收藏
页码:843 / 858
页数:15
相关论文
共 50 条
  • [1] Perfect Fluid Spacetimes and Gradient Solitons
    De, Krishnendu
    De, Uday Chand
    Syied, Abdallah Abdelhameed
    Bin Turki, Nasser
    Alsaeed, Suliman
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (04) : 843 - 858
  • [2] Perfect Fluid Spacetimes and Gradient Solitons
    De, Uday Chand
    Mantica, Carlo Alberto
    Suh, Young Jin
    FILOMAT, 2022, 36 (03) : 829 - 842
  • [3] INVESTIGATION ON GRADIENT SOLITONS IN PERFECT FLUID SPACETIMES
    De, Krishnendu
    De, Uday Chand
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 91 (03) : 277 - 289
  • [4] Characterization of perfect fluid spacetimes admitting gradient η-Ricci and gradient Einstein solitons
    Chaubey, Sudhakar K.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 162
  • [5] Perfect fluid spacetimes and Yamabe solitons
    De, U. C.
    Chaubey, S. K.
    Shenawy, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [6] Almost Schouten solitons and perfect fluid spacetimes
    Sardar, Arpan
    Woo, Changhwa
    De, Uday Chand
    FILOMAT, 2024, 38 (16) : 5827 - 5837
  • [7] Hyperbolic Ricci solitons on perfect fluid spacetimes
    Azami, Shahroud
    Jafari, Mehdi
    Jamal, Nargis
    Haseeb, Abdul
    AIMS MATHEMATICS, 2024, 9 (07): : 18929 - 18943
  • [8] Relativistic perfect fluid spacetimes and Ricci–Yamabe solitons
    Mohd. Danish Siddiqi
    Uday Chand De
    Letters in Mathematical Physics, 2022, 112
  • [9] Characterizations of perfect fluid spacetimes obeying f(R)-gravity equipped with different gradient solitons
    De, Krishnendu
    Suh, Young Jin
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)
  • [10] Perfect fluid spacetimes and k-almost Yamabe solitons
    De, Krishnendu
    De, Uday Chand
    Gezer, Aydin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1236 - 1246