Subspace K-means clustering

被引:0
|
作者
Marieke E. Timmerman
Eva Ceulemans
Kim De Roover
Karla Van Leeuwen
机构
[1] University of Groningen,Heymans Institute for Psychology, Psychometrics & Statistics
[2] K.U. Leuven,Educational Sciences
[3] K.U. Leuven,Parenting and Special Education
来源
Behavior Research Methods | 2013年 / 45卷
关键词
Cluster analysis; Cluster recovery; Multivariate data; Reduced ; -means; means; Factorial ; -means; Mixtures of factor analyzers; MCLUST;
D O I
暂无
中图分类号
学科分类号
摘要
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning approaches. To evaluate subspace K-means, we performed a comparative simulation study, in which we manipulated the overlap of subspaces, the between-cluster variance, and the error variance. The study shows that the subspace K-means algorithm is sensitive to local minima but that the problem can be reasonably dealt with by using partitions of various cluster procedures as a starting point for the algorithm. Subspace K-means performs very well in recovering the true clustering across all conditions considered and appears to be superior to its competitor methods: K-means, reduced K-means, factorial K-means, mixtures of factor analyzers (MFA), and MCLUST. The best competitor method, MFA, showed a performance similar to that of subspace K-means in easy conditions but deteriorated in more difficult ones. Using data from a study on parental behavior, we show that subspace K-means analysis provides a rich insight into the cluster characteristics, in terms of both the relative positions of the clusters (via the centroids) and the shape of the clusters (via the within-cluster residuals).
引用
收藏
页码:1011 / 1023
页数:12
相关论文
共 50 条
  • [41] Sparse Embedded k-Means Clustering
    Liu, Weiwei
    Shen, Xiaobo
    Tsang, Ivor W.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [42] Granular K-means Clustering Algorithm
    Zhou, Chenglong
    Chen, Yuming
    Zhu, Yidong
    Computer Engineering and Applications, 2023, 59 (13) : 317 - 324
  • [43] APPLICATION OF METAHEURISTICS TO K-MEANS CLUSTERING
    Lisin, A. V.
    Faizullin, R. T.
    COMPUTER OPTICS, 2015, 39 (03) : 406 - 412
  • [44] STRONG CONSISTENCY OF K-MEANS CLUSTERING
    POLLARD, D
    ANNALS OF STATISTICS, 1981, 9 (01): : 135 - 140
  • [45] Locally Private k-Means Clustering
    Stemmer, Uri
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 548 - 559
  • [46] Selective inference for k-means clustering
    Chen, Yiqun T.
    Witten, Daniela M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [47] Locality Sensitive K-means Clustering
    Liu, Chlen-Liang
    Hsai, Wen-Hoar
    Chang, Tao-Hsing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2018, 34 (01) : 289 - 305
  • [48] Clones Clustering Using K-Means
    Ashish, Aveg
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [49] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [50] Outliers in rough k-means clustering
    Peters, G
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 702 - 707