An Attempt to Partition Stomatal and Non-stomatal Ozone Deposition Parts on a Short Grassland

被引:0
|
作者
L. Horváth
P. Koncz
A. Móring
Z. Nagy
K. Pintér
T. Weidinger
机构
[1] Hungarian Meteorological Service,MTA
[2] Szent István University,SZIE Plant Ecology Research Group
[3] Centre for Ecology and Hydrology,Institute of Botany and Plant Physiology
[4] University of Edinburgh,Department of Meteorology
[5] Szent István University,undefined
[6] Eötvös Loránd University,undefined
来源
Boundary-Layer Meteorology | 2018年 / 167卷
关键词
Deposition; Eddy covariance; Non-stomatal conductance; Ozone flux; Stomatal conductance;
D O I
暂无
中图分类号
学科分类号
摘要
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index LAI<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${LAI}< 4$$\end{document}. In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with LAI≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${LAI}\approx 1$$\end{document}, the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with LAI<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${LAI}< 4$$\end{document} where soil uptake also has a role in ozone deposition.
引用
收藏
页码:303 / 326
页数:23
相关论文
共 50 条
  • [41] Stomatal and non-stomatal regulations of photosynthesis in response to salinity, and K and Ca fertigation in cotton ( Gossypium hirsutum L cv.)
    Ma, Yingying
    Yuan, Zuoqiang
    Wei, Zhenhua
    Yan, Fei
    Liu, Xuezhi
    Li, Xiangnan
    Hou, Jingxiang
    Hao, Zhanqing
    Liu, Fulai
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2025, 230
  • [42] Non-stomatal factors limit cotton photosynthesis under silverleaf whitefly stress
    Lin, TB
    Schwartz, L
    Saranga, Y
    PHYSIOLOGIA PLANTARUM, 1999, 107 (03) : 303 - 311
  • [43] Ozone effects in a drier climate: implications for stomatal fluxes of reduced stomatal sensitivity to soil drying in a typical grassland species
    Hayes, Felicity
    Wagg, Serena
    Mills, Gina
    Wilkinson, Sally
    Davies, William
    GLOBAL CHANGE BIOLOGY, 2012, 18 (03) : 948 - 959
  • [44] A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types
    Gimeno, Teresa E.
    Saavedra, Noelia
    Ogee, Jerome
    Medlyn, Belinda E.
    Wingate, Lisa
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (05) : 1639 - 1651
  • [45] Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes
    Ramalho, J. C.
    Zlatev, Z. S.
    Leitao, A. E.
    Pais, I. P.
    Fortunato, A. S.
    Lidon, F. C.
    PLANT BIOLOGY, 2014, 16 (01) : 133 - 146
  • [46] Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand
    Nunn, A. J.
    Cieslik, S.
    Metzger, U.
    Wieser, G.
    Matyssek, R.
    ENVIRONMENTAL POLLUTION, 2010, 158 (06) : 2014 - 2022
  • [47] Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species
    Wilson, KB
    Baldocchi, DD
    Hanson, PJ
    TREE PHYSIOLOGY, 2000, 20 (12) : 787 - 797
  • [48] LEAF POTASSIUM DEFICIENCIES ENHANCE DEHYDRATION INHIBITION OF NON-STOMATAL CONTROLLED PHOTOSYNTHESIS
    Whalen, Christa
    Berkowitz, Gerald
    PLANT PHYSIOLOGY, 1984, 75 : 165 - 165
  • [49] Synthetic ozone deposition and stomatal uptake at flux tower sites
    Ducker, Jason A.
    Holmes, Christopher D.
    Keenan, Trevor F.
    Fares, Silvano
    Goldstein, Allen H.
    Mammarella, Ivan
    Munger, J. William
    Schnell, Jordan
    BIOGEOSCIENCES, 2018, 15 (17) : 5395 - 5413
  • [50] Modelling annual pasture dynamics: Application to stomatal ozone deposition
    Gonzalez-Fernandez, Ignacio
    Bermejo, Victoria
    Elvira, Susana
    Sanz, Javier
    Gimeno, Benjamin S.
    Alonso, Rocio
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (21-22) : 2507 - 2517