An unsupervised deep learning framework for predicting human essential genes from population and functional genomic data

被引:0
|
作者
Troy M. LaPolice
Yi-Fei Huang
机构
[1] Pennsylvania State University,Department of Biology
[2] Pennsylvania State University,Bioinformatics and Genomics Graduate Program
[3] Pennsylvania State University,Huck Institutes of the Life Sciences
来源
BMC Bioinformatics | / 24卷
关键词
Deep Learning; Unsupervised; Essential Genes; Loss of Function Intolerance; Population Genomics; Functional Genomics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A semi-supervised deep learning approach for predicting the functional effects of genomic non-coding variations
    Jia, Hao
    Park, Sung-Joon
    Nakai, Kenta
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 6)
  • [32] A semi-supervised deep learning approach for predicting the functional effects of genomic non-coding variations
    Jia, Hao
    Park, Sung-Joon
    Nakai, Kenta
    BMC Bioinformatics, 2021, 22
  • [33] A semi-supervised deep learning approach for predicting the functional effects of genomic non-coding variations
    Hao Jia
    Sung-Joon Park
    Kenta Nakai
    BMC Bioinformatics, 22
  • [34] An Unsupervised Framework for Sensing Individual and Cluster Behavior Patterns From Human Mobile Data
    Zheng, Jiangchuan
    Ni, Lionel M.
    UBICOMP'12: PROCEEDINGS OF THE 2012 ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, 2012, : 153 - 162
  • [35] Human Identification via Unsupervised Feature Learning from UWB Radar Data
    Yin, Jie
    Tran, Son N.
    Zhang, Qing
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 322 - 334
  • [36] A Deep Learning Model for Predicting Tumor Suppressor Genes and Oncogenes from PDB Structure
    Tavanaei, Amirhossein
    Anandanadarajah, Nishanth
    Maida, Anthony
    Loganantharaj, Rasiah
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 613 - 617
  • [37] Learning From Noisy Data: An Unsupervised Random Denoising Method for Seismic Data Using Model-Based Deep Learning
    Wang, Feng
    Yang, Bo
    Wang, Yuqing
    Wang, Ming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] Deep learning approach for predicting functional Z-DNA regions using omics data
    Beknazarov, Nazar
    Jin, Seungmin
    Poptsova, Maria
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Deep learning approach for predicting functional Z-DNA regions using omics data
    Nazar Beknazarov
    Seungmin Jin
    Maria Poptsova
    Scientific Reports, 10
  • [40] Predicting online shopping behaviour from clickstream data using deep learning
    Koehn, Dennis
    Lessmann, Stefan
    Schaal, Markus
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 150