The absolute continuity of convolutions of orbital measures in SO(2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(2n+1)$$\end{document}

被引:0
|
作者
Kathryn E. Hare
机构
[1] University of Waterloo,Department of Pure Mathematics
关键词
Orbital measure; Absolutely continuous measure; Compact Lie group; Primary 43A80; Secondary 58C35; 17B22;
D O I
10.1007/s00605-022-01706-0
中图分类号
学科分类号
摘要
Let G be a compact Lie group of Lie type Bn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n},$$\end{document} such as SO(2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(2n+1)$$\end{document}. We characterize the tuples (x1,…,xL)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_{1},\ldots ,x_{L})$$\end{document} of the elements xj∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{j}\in G$$\end{document} which have the property that the product of their conjugacy classes has non-empty interior. Equivalently, the convolution product of the orbital measures supported on their conjugacy classes is absolutely continuous with respect to Haar measure. The characterization depends on the dimensions of the largest eigenspaces of each xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{j}$$\end{document}. Such a characterization was previously only known for the compact Lie groups of type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{n}$$\end{document}.
引用
收藏
页码:275 / 299
页数:24
相关论文
共 50 条