Voronovskaja’s Theorem and Iterations for Complex Bernstein Polynomials in Compact Disks

被引:0
|
作者
Sorin G. Gal
机构
[1] University of Oradea,Department of Mathematics and Computer Science
来源
关键词
Primary 30E10; Secondary 30C10, 30C45; Complex Bernstein polynomials; Voronovskaja’s theorem; iterates; univalence; starlikeness; convexity and spirallikeness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, firstly we prove the Voronovskaja’s convergence theorem for complex Bernstein polynomials in compact disks in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}, centered at origin, with quantitative estimates of this convergence. Secondly, we study the approximation properties of the iterates of complex Bernstein polynomials and we prove that they preserve in the unit disk (beginning with an index) the univalence, starlikeness, convexity and spirallikeness.
引用
收藏
页码:253 / 272
页数:19
相关论文
共 50 条