A family of 4-point odd-ary non-stationary subdivision schemes

被引:0
|
作者
Mustafa G. [1 ]
Ashraf P. [1 ]
机构
[1] Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur
关键词
Interpolating scheme; Lagrange polynomial; Non-stationary; Odd-ary scheme;
D O I
10.1007/s40324-014-0029-2
中图分类号
学科分类号
摘要
In this article, we present a family of 4-point odd-ary interpolating non-stationary schemes. This family of schemes is based on Lagrange trigonometric polynomial. These non-stationary schemes reproduce functions spanned by { 1 , cos α(x) , sin α(x) }. Some examples are also given to show visual performance of the schemes. © 2014, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:77 / 91
页数:14
相关论文
共 50 条
  • [21] A new class of 2m-point binary non-stationary subdivision schemes
    Abdul Ghaffar
    Zafar Ullah
    Mehwish Bari
    Kottakkaran Sooppy Nisar
    Maysaa M. Al-Qurashi
    Dumitru Baleanu
    Advances in Difference Equations, 2019
  • [22] A New Family of Interpolatory Non-Stationary Subdivision Schemes for Curve Design in Geometric Modeling
    Conti, Costanza
    Romani, Lucia
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 523 - +
  • [23] Construction of a family of non-stationary combined ternary subdivision schemes reproducing exponential polynomials
    Zhang, Zeze
    Zheng, Hongchan
    Pan, Lulu
    OPEN MATHEMATICS, 2021, 19 (01): : 909 - 926
  • [24] Ternary three point non-stationary subdivision scheme
    Siddiqi, Shahid S.
    Younis, Muhammad
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (13) : 1875 - 1882
  • [25] Ternary approximating non-stationary subdivision schemes for curve design
    Siddiqi, Shahid S.
    Younis, Muhammad
    OPEN ENGINEERING, 2014, 4 (04): : 371 - 378
  • [26] An Efficient Computational Approach for Computing Subdivision Depth of Non-Stationary Binary Subdivision Schemes
    Karim, Samsul Ariffin Abdul
    Khan, Faheem
    Mustafa, Ghulam
    Shahzad, Aamir
    Asghar, Muhammad
    MATHEMATICS, 2023, 11 (11)
  • [27] Continuity and error estimate of 4-point ternary stationary subdivision scheme
    Institute of Mathematics, Fudan University, Shanghai 200433, China
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 2006, 1 (128-136):
  • [28] A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics
    Beccari, C.
    Casciola, G.
    Romani, L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (01) : 1 - 9
  • [29] Adaptive geometry compression based on 4-point interpolatory subdivision schemes
    Zhang, Hui
    Yong, Jun-Hai
    Paul, Jean-Claude
    ADVANCES IN MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2006, 4153 : 425 - 434
  • [30] A Family of 6-Point n-Ary Interpolating Subdivision Schemes
    Bashir, Robina
    Mustafa, Ghulam
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2018, 37 (04) : 481 - 490