Solution of Hammerstein type integral equation with two variables via a new fixed point theorem

被引:0
|
作者
Anupam Das
Bhuban Chandra Deuri
机构
[1] Department of Mathematics,Department of Mathematics
[2] Cotton University,undefined
[3] Panbazar,undefined
[4] Rajiv Gandhi University,undefined
[5] Rono Hills,undefined
来源
The Journal of Analysis | 2023年 / 31卷
关键词
Measure of noncompactness (MNC); Integral equation (IE); Fixed point theorem (FPT); 35K90; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, a new fixed point theorem(FTP) involving the measure of noncompactness is discussed. This new FTP is a generalization of Darbo’s FTP in Banach space. Further, this newly established FTP is applied to analyze the solvability of Hammerstein type integral equation in two variables. At last, we provide examples to justify our results.
引用
收藏
页码:1839 / 1854
页数:15
相关论文
共 50 条
  • [31] Application of fixed point method for solving nonlinear Volterra-Hammerstein integral equation
    Maleknejad, K. (maleknejad@iust.ac.ir), 1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (74):
  • [32] EXISTENCE AND UNIQUENESS THEOREM FOR A HAMMERSTEIN NONLINEAR INTEGRAL EQUATION
    Khachatryan, A. Kh.
    Khachatryan, Kh. A.
    OPUSCULA MATHEMATICA, 2011, 31 (03) : 393 - 398
  • [33] A study on the solvability of fractional integral equation in a Banach algebra via Petryshyn's fixed point theorem
    Halder, Sukanta
    Deepmala, Cemil
    Tunc, Cemil
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2024, 18 (01):
  • [34] Integrable Solutions of a Nonlinear Integral Equation via Noncompactness Measure and Krasnoselskii's Fixed Point Theorem
    Bousselsal, Mahmoud
    Jah, Sidi Hamidou
    INTERNATIONAL JOURNAL OF ANALYSIS, 2014,
  • [35] Solvability for two dimensional functional integral equations via Petryshyn’s fixed point theorem
    Amar Deep
    Deepak Dhiman
    Bipan Hazarika
    Syed Abbas
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [36] Solvability for two dimensional functional integral equations via Petryshyn's fixed point theorem
    Deep, Amar
    Dhiman, Deepak
    Hazarika, Bipan
    Abbas, Syed
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [37] On Fixed-Point Equations Involving Geraghty-Type Contractions with Solution to Integral Equation
    Singh, Moirangthem Pradeep
    Rohen, Yumnam
    Saleem, Naeem
    Alam, Khairul Habib
    Singh, Kumam Anthony
    Razzaque, Asima
    MATHEMATICS, 2023, 11 (24)
  • [39] Existence of Fixed Points for An Integral Operator via Fixed Point Theorem on Gauge Spaces
    Ali, Muhammad Usman
    Kumam, Poom
    Fahimuddin
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (01): : 15 - 25
  • [40] Generalizations of Darbo's fixed point theorem for new condensing operators with application to a functional integral equation
    Rehman, Habib Ur
    Gopal, Dhananjay
    Kumam, Poom
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 166 - 182