Optimal control on the heisenberg group

被引:18
|
作者
Monroy-Pérez F. [1 ]
Anzaldo-Meneses A. [1 ]
机构
[1] Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180 Azcapotzalco
关键词
Conjugate locus; Extremal curves; Heisenberg group; Optimal control; Sub-Riemannian geometry;
D O I
10.1023/A:1021787121457
中图分类号
学科分类号
摘要
Let H denote either the Heisenberg group ℝ2n+1, or the Cartesian product of n copies of the three-dimensional Heisenberg group ℝ3. Let {X1,Y1,... ,Xn,Yn} be an independent set of leftinvariant vector fields on H. In this paper, we study the left-invariant optimal control problem on H with the dynamics q(t) = ∑i=1nui(t)Xi(q(t))+ vi(t)Y(q(t)). the cost functional Λ(q, u) = 1/2∫∑i=1nμi (ui2+vi2), with arbitrary positive parameters μ1,... , μn, and admissible controls taken from the set of measurable functions t → u(t) = (u1(t), v1 (t), ... ,un(t), vn(t)). The above control system is encoded either in the kernel of a contact 1-form (for ℝ2n+1), or in the kernel of a Pfaffian system (for ℝ3n). In both cases, the action of the semi-direct product of the torus Tn with H describe the symmetries of the problem. The Pontryagin maximum principle provides optimal controls; extremal trajectories are solutions to the Hamiltonian system associated with the problem. Abnormal extremals (which do not depend on the cost functional) yield solutions that are geometrically irrelevant. An explicit integration of the extremal equations provides a tool for studying some aspects of the sub-Riemannian structure defined on H by means of the above optimal control problem. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:473 / 499
页数:26
相关论文
共 50 条
  • [11] Linear Control Systems on Homogeneous Spaces of the Heisenberg Group
    Da Silva, Adriano
    Kizil, Eyup
    Duman, Okan
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 2065 - 2086
  • [12] Global Solution for the Optimal Feedback Control of the Underactuated Heisenberg System
    Park, Chandeok
    Scheeres, Daniel J.
    Guibout, Vincent
    Bloch, Anthony
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2638 - 2642
  • [13] Embedding the Heisenberg group into a bounded-dimensional Euclidean space with optimal distortion
    Tao, Terence
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (01) : 1 - 44
  • [14] The Galilei group in an optimal control problem
    I. V. Koz’min
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 162 - 173
  • [15] OPTIMAL POSITIONAL CONTROL OF A GROUP OF SYSTEMS
    BALASHEVICH, NV
    GABASOV, R
    KIRILLOVA, FM
    AUTOMATION AND REMOTE CONTROL, 1994, 55 (02) : 164 - 171
  • [16] The Galilei group in an optimal control problem
    Kozmin, I. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 147 - 158
  • [17] Optimal parking in group elevator control
    Brand, M
    Nikovski, D
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 1002 - 1008
  • [18] The Galilei group in an optimal control problem
    Koz'min, I. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 : S162 - S173
  • [19] Optimal Robust Control of a Robots Group
    S. I. Osadchy
    V. A. Zozulya
    A. P. Ladanyuk
    L. G. Vikhrova
    V. M. Kalich
    Automatic Control and Computer Sciences, 2019, 53 : 298 - 309
  • [20] Optimal Robust Control of a Robots Group
    Osadchy, S. I.
    Zozulya, V. A.
    Ladanyuk, A. P.
    Vikhrova, L. G.
    Kalich, V. M.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2019, 53 (04) : 298 - 309