Hardy-Sobolev spaces and their multipliers

被引:0
|
作者
GuangFu Cao
Li He
机构
[1] Guangzhou University,Department of Mathematics
[2] Sun Yat-sen University,Department of Mathematics
来源
Science China Mathematics | 2014年 / 57卷
关键词
Hardy-Sobolev space; dual space; spectrum; 32A37; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined, and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition, the spectrum theorem is obtained for some special multiplier.
引用
收藏
页码:2361 / 2368
页数:7
相关论文
共 50 条
  • [41] Embedding theorems for Sobolev and Hardy-Sobolev spaces and estimates of Fourier transforms
    Kolyada, V. I.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 615 - 637
  • [42] Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications
    Chen, Xiaming
    Jiang, Renjin
    Yang, Dachun
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 336 - 362
  • [43] TANGENTIAL-EXCEPTIONAL SETS FOR HARDY-SOBOLEV SPACES
    CASCANTE, C
    ORTEGA, JM
    ILLINOIS JOURNAL OF MATHEMATICS, 1995, 39 (01) : 68 - 85
  • [44] Sharp trace Hardy-Sobolev inequalities and fractional Hardy-Sobolev inequalities
    Tzirakis, Konstantinos
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4513 - 4539
  • [45] Optimal logarithmic estimates in Hardy-Sobolev spaces Hk,∞
    Chaabane, Slim
    Feki, Imed
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) : 1001 - 1006
  • [46] COMPACTNESS OF HANKEL OPERATORS ON HARDY-SOBOLEV SPACES OF THE POLYDISK
    Ahern, Patrick
    Youssfi, El Hassan
    Zhu, Kehe
    JOURNAL OF OPERATOR THEORY, 2009, 61 (02) : 301 - 312
  • [47] Rough singular integral operators on Hardy-Sobolev spaces
    Chen D.
    Chen J.
    Fan D.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (1) : 1 - 9
  • [48] HARDY-SOBOLEV INEQUALITIES AND WEIGHTED CAPACITIES IN METRIC SPACES
    Ihnatsyeva, Lizaveta
    Lehrback, Juha
    Vahakangas, Antti V.
    MATHEMATICA SCANDINAVICA, 2022, 128 (03) : 611 - 633
  • [49] On the Hardy-Sobolev equation
    Dancer, E. N.
    Gladiali, F.
    Grossi, M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 299 - 336
  • [50] HARDY-SOBOLEV INEQUALITY
    KAVIAN, O
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (18): : 779 - 781