Metal–metal bonding using silver/copper nanoparticles

被引:0
|
作者
Y. Kobayashi
T. Maeda
Y. Yasuda
T. Morita
机构
[1] Ibaraki University,Department of Biomolecular Functional Engineering, College of Engineering
[2] Hitachi Research Laboratory,undefined
[3] Hitachi Ltd,undefined
来源
Applied Nanoscience | 2016年 / 6卷
关键词
Nanoparticles; Copper; Silver; Filler; Metal–metal bonding;
D O I
暂无
中图分类号
学科分类号
摘要
A method for producing nanoparticles composed of silver and copper and a metal–metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).
引用
收藏
页码:883 / 893
页数:10
相关论文
共 50 条
  • [41] METAL-TO-METAL BONDING USING AN OXIDIZING AMBIENT ATMOSPHERE
    NAYAK, D
    REISMAN, A
    TURLIK, I
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (04) : 1023 - 1025
  • [42] Effect of Copper–Copper Direct Bonding on Voiding in Metal Thin Films
    P. Gondcharton
    B. Imbert
    L. Benaissa
    F. Fournel
    M. Verdier
    Journal of Electronic Materials, 2015, 44 : 4128 - 4133
  • [43] The Interaction of Metal Nanoparticles (Copper, Silver, Platinum, and Gold) with Cell Line HS-5
    Lange, Agata
    Jaworski, Slawomir
    Khan, Aysia
    FOLIA BIOLOGICA-KRAKOW, 2020, 68 (03): : 89 - 96
  • [44] Atomic Study on Copper-Copper Bonding Using Nanoparticles
    Song Xiaohui
    Zhang Rui
    Zhao Huadong
    JOURNAL OF ELECTRONIC PACKAGING, 2020, 142 (02)
  • [45] Susceptibility of HepG2 Cells to Silver Nanoparticles in Combination with other Metal/Metal Oxide Nanoparticles
    Meczynska-Wielgosz, Sylwia
    Wojewodzka, Maria
    Matysiak-Kucharek, Magdalena
    Czajka, Magdalena
    Jodlowska-Jedrych, Barbara
    Kruszewski, Marcin
    Kapka-Skrzypczak, Lucyna
    MATERIALS, 2020, 13 (10)
  • [46] Electrochemical Metallization Processes for Copper and Silver Metal Interconnection
    Kwon, Oh Joong
    Cho, Sung Ki
    Kim, Jae Jeong
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2009, 47 (02): : 141 - 149
  • [47] Fabrication of transparent metal mesh electrode by using silver-metal oxide nanoparticles for application to touch screen panel
    Lee, Gun-Woo
    Sim, Sang Bo
    Park, Lee Soon
    Nam, Su Yong
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2017, 651 (01) : 163 - 169
  • [48] METAL-METAL BONDS .V. COMPLEXES CONTAINING COPPER- AND SILVER-METAL LINKAGES
    KASENALLY, AS
    NYHOLM, RS
    STIDDARD, MH
    JOURNAL OF THE CHEMICAL SOCIETY, 1965, (OCT): : 5343 - +
  • [49] Effects of metal ions on the antimicrobial properties of silver nanoparticles
    Bonner, Chartanay
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [50] Composite metal–carbon materials with gold and silver nanoparticles
    Zherebtsov D.A.
    Galimov D.M.
    Lashkul A.V.
    D’yachuk V.V.
    Lyakhderanta E.
    Mikhailov G.G.
    Ojala I.
    Laiho R.
    Inorganic Materials: Applied Research, 2011, 2 (5) : 524 - 527