The mixed Littlewood conjecture for pseudo-absolute values

被引:0
|
作者
Stephen Harrap
Alan Haynes
机构
[1] Aarhus University,Department of Mathematics
[2] University of Bristol,Department of Mathematics
来源
Mathematische Annalen | 2013年 / 357卷
关键词
37A45; 11K60; 11J83; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the mixed Littlewood Conjecture with pseudo-absolute values. We show that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is a prime and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal D $$\end{document} is a pseudo-absolute value sequence satisfying mild conditions then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \inf _{n\in \mathbb N } n|n|_p|n|_\mathcal D \Vert n\alpha \Vert =0\quad \text{ for } \text{ all }\,\,\alpha \in \mathbb R . \end{aligned}$$\end{document}Our proof relies on a measure rigidity theorem due to Lindenstrauss and lower bounds for linear forms in logarithms due to Baker and Wüstholz. We also deduce the answer to the related metric question of how fast the infimum above tends to zero, for almost every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页码:941 / 960
页数:19
相关论文
共 50 条