The mixed Littlewood conjecture for pseudo-absolute values

被引:0
|
作者
Stephen Harrap
Alan Haynes
机构
[1] Aarhus University,Department of Mathematics
[2] University of Bristol,Department of Mathematics
来源
Mathematische Annalen | 2013年 / 357卷
关键词
37A45; 11K60; 11J83; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the mixed Littlewood Conjecture with pseudo-absolute values. We show that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is a prime and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal D $$\end{document} is a pseudo-absolute value sequence satisfying mild conditions then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \inf _{n\in \mathbb N } n|n|_p|n|_\mathcal D \Vert n\alpha \Vert =0\quad \text{ for } \text{ all }\,\,\alpha \in \mathbb R . \end{aligned}$$\end{document}Our proof relies on a measure rigidity theorem due to Lindenstrauss and lower bounds for linear forms in logarithms due to Baker and Wüstholz. We also deduce the answer to the related metric question of how fast the infimum above tends to zero, for almost every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页码:941 / 960
页数:19
相关论文
共 50 条
  • [1] The mixed Littlewood conjecture for pseudo-absolute values
    Harrap, Stephen
    Haynes, Alan
    MATHEMATISCHE ANNALEN, 2013, 357 (03) : 941 - 960
  • [2] SOME REFINED RESULTS ON THE MIXED LITTLEWOOD CONJECTURE FOR PSEUDO-ABSOLUTE VALUES
    Liu, Wencai
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 107 (01) : 91 - 109
  • [3] On a mixed Littlewood conjecture in Diophantine approximation
    Bugeaud, Yann
    Drmota, Michael
    De Mathan, Bernard
    ACTA ARITHMETICA, 2007, 128 (02) : 107 - 124
  • [4] On a mixed Littlewood conjecture in fields of power series
    Bugeaud, Yann
    de Mathan, Bernard
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 19 - +
  • [5] METRIC CONSIDERATIONS CONCERNING THE MIXED LITTLEWOOD CONJECTURE
    Bugeaud, Yann
    Haynes, Alan
    Velani, Sanju
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (03) : 593 - 609
  • [6] Determination of GNSS pseudo-absolute code biases and their long-term combination
    Arturo Villiger
    Stefan Schaer
    Rolf Dach
    Lars Prange
    Andreja Sušnik
    Adrian Jäggi
    Journal of Geodesy, 2019, 93 : 1487 - 1500
  • [7] Determination of GNSS pseudo-absolute code biases and their long-term combination
    Villiger, Arturo
    Schaer, Stefan
    Dach, Rolf
    Prange, Lars
    Susnik, Andreja
    Jaggi, Adrian
    JOURNAL OF GEODESY, 2019, 93 (09) : 1487 - 1500
  • [8] On the Mixed Littlewood Conjecture and continued fractions in quadratic fields
    Bengoechea, Paloma
    Zorin, Evgeniy
    JOURNAL OF NUMBER THEORY, 2016, 162 : 1 - 10
  • [9] Pseudo-absolute quantitative analysis using gas chromatography Vacuum ultraviolet spectroscopy - A tutorial
    Bai, Ling
    Smuts, Jonathan
    Walsh, Phillip
    Qiu, Changling
    McNair, Harold M.
    Schug, Kevin A.
    ANALYTICA CHIMICA ACTA, 2017, 953 : 10 - 22
  • [10] CONJECTURE OF LITTLEWOOD
    HALL, RR
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) : 443 - 445