Blow Up Criteria for the Incompressible Nematic Liquid Crystal Flows

被引:0
|
作者
Qiao Liu
Yemei Wei
机构
[1] Hunan Normal University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2017年 / 147卷
关键词
Incompressible nematic liquid crystal flows; Navier–Stokes equations; Blow up criteria; 76A15; 35Q35; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field ∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla u$\end{document} and the gradient orientation field ∇d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla d$\end{document}. More precisely, we show that 0<T∗<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< T_{ \ast}<+\infty$\end{document} is the maximal time interval if and only if ∫0T∗∥∥∂iu∥Lxiγ∥Lxjxkαβ+∥∇d∥L∞83dt=∞, with 2α+2β≤3α+24α, and 1≤γ≤α,2<α≤+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$ \end{document} or ∫0T∗∥∂3u3∥Lαβ+∥∇d∥L∞83dt=∞,with 3α+2β≤3(α+2)4α, and 2<α≤∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$ \end{document} where i,j,k∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i,j,k\in\{1,2,3\}$\end{document}, i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq j$\end{document}, i≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\neq k$\end{document}, and j≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j\neq k$\end{document}.
引用
收藏
页码:63 / 80
页数:17
相关论文
共 50 条
  • [11] A blow-up criterion for the compressible nematic liquid crystal flows in three dimensions
    Liu, Junchen
    Wang, Xiuqing
    Qin, Yuming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2205 - 2225
  • [12] A REMARK ON BLOW UP CRITERION OF THREE-DIMENSIONAL NEMATIC LIQUID CRYSTAL FLOWS
    Wang, Yinxia
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2016, 5 (02): : 337 - 348
  • [13] LPS’S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    陈卿
    谭忠
    吴国春
    Acta Mathematica Scientia, 2014, (04) : 1072 - 1080
  • [14] LPS'S CRITERION FOR INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
    Chen, Qing
    Tan, Zhong
    Wu, Guochun
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) : 1072 - 1080
  • [15] Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity
    Wang, Yu-Zhu
    Wang, Yin-Xia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (01) : 60 - 68
  • [16] A Logarithmical Blow-up Criterion for the 3D Nematic Liquid Crystal Flows
    Liu, Qiao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 29 - 47
  • [17] A Logarithmical Blow-up Criterion for the 3D Nematic Liquid Crystal Flows
    Qiao Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 29 - 47
  • [18] Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space
    Mahmood, Tariq
    Shang, Zhaoyang
    AIMS MATHEMATICS, 2020, 5 (02): : 746 - 765
  • [19] The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure
    Liu, Qiao
    Wang, Pei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 290 - 306
  • [20] Blow-up criteria for 3D nematic liquid crystal models in a bounded domain
    Jishan Fan
    Gen Nakamura
    Yong Zhou
    Boundary Value Problems, 2013