Geodesic transversal problem for join and lexicographic product of graphs

被引:0
|
作者
Iztok Peterin
Gabriel Semanišin
机构
[1] University of Maribor,Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science
[2] Institute of Mathematics,Institute of Computer Science, Faculty of Science
[3] Physics and Mechanics,undefined
[4] Pavol Jozef Šafárik University,undefined
来源
关键词
Geodesic transversal; Geodesic transversal number; Lexicographic product; Join; 05C69; 05C12; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices of a graph G is a geodesic transversal of G if every maximal geodesic of G contains at least one vertex of S. The minimum cardinality of a geodesic transversal of G is denoted by gt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G)$$\end{document} and is called geodesic transversal number. For two graphs G and H we deal with the behavior of this invariant for the lexicographic product G∘H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\circ H$$\end{document} and join G⊕H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\oplus H$$\end{document}. We determine gt(G⊕H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G\oplus H)$$\end{document} in terms of structural properties of the original graphs and describe gt(G∘H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G\circ H)$$\end{document} as a solution of an optimization problem concerning specific subsets of V(G).
引用
收藏
相关论文
共 50 条
  • [31] Gromov hyperbolicity in lexicographic product graphs
    Carballosa, Walter
    De la Cruz, Amauris
    Rodriguez, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (01):
  • [32] On indicated coloring of lexicographic product of graphs
    Francis, P.
    Raj, S. Francis
    Gokulnath, M.
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 576 - 582
  • [33] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [34] On the Roman domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Pavlic, Polona
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2030 - 2036
  • [35] Identifying codes of lexicographic product of graphs
    Feng, Min
    Xu, Min
    Wang, Kaishun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [36] Rainbow domination in the lexicographic product of graphs
    Sumenjak, Tadeja Kraner
    Rall, Douglas F.
    Tepeh, Aleksandra
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2133 - 2141
  • [37] THE BASIS NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    ALI, AA
    MAROUGI, GT
    ARS COMBINATORIA, 1993, 36 : 271 - 282
  • [38] Geodetic numbers of tensor product and lexicographic product of graphs
    Chandrasekar, K. Raja
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 106 - 114
  • [39] PARTIAL DOMINATION IN THE JOIN, CORONA, LEXICOGRAPHIC AND CARTESIAN PRODUCTS OF GRAPHS
    Macapodi, Roselainie D.
    Isla, Rowena T.
    Canoy, Sergio R., Jr.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (02): : 277 - 293
  • [40] The Geodesic Classification Problem on Graphs
    Macedo de Araujo, Paulo Henrique
    Campelo, Manoel
    Correa, Ricardo C.
    Labbe, Martine
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 65 - 76