Geodesic transversal problem for join and lexicographic product of graphs

被引:0
|
作者
Iztok Peterin
Gabriel Semanišin
机构
[1] University of Maribor,Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science
[2] Institute of Mathematics,Institute of Computer Science, Faculty of Science
[3] Physics and Mechanics,undefined
[4] Pavol Jozef Šafárik University,undefined
来源
关键词
Geodesic transversal; Geodesic transversal number; Lexicographic product; Join; 05C69; 05C12; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices of a graph G is a geodesic transversal of G if every maximal geodesic of G contains at least one vertex of S. The minimum cardinality of a geodesic transversal of G is denoted by gt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G)$$\end{document} and is called geodesic transversal number. For two graphs G and H we deal with the behavior of this invariant for the lexicographic product G∘H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\circ H$$\end{document} and join G⊕H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\oplus H$$\end{document}. We determine gt(G⊕H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G\oplus H)$$\end{document} in terms of structural properties of the original graphs and describe gt(G∘H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ gt }(G\circ H)$$\end{document} as a solution of an optimization problem concerning specific subsets of V(G).
引用
收藏
相关论文
共 50 条
  • [1] Geodesic transversal problem for join and lexicographic product of graphs
    Peterin, Iztok
    Semanisin, Gabriel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [2] Clique doubly connected domination in the join and lexicographic product of graphs
    Enriquez, Enrico L.
    Ngujo, Albert D.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [3] Helly and exchange numbers of geodesic and Steiner convexities in lexicographic product of graphs
    Anand, Bijo S.
    Changat, Manoj
    Narasimha-Shenoi, Prasanth G.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [4] On connected co-independent domination in the join, corona and lexicographic product of graphs
    Detalla, Reyna Mae L.
    Perocho, Marlou T.
    Rara, Helen M.
    Canoy, Sergio R., Jr.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (04)
  • [5] LEXICOGRAPHIC PRODUCT OF GRAPHS
    HEMMINGER, RL
    DUKE MATHEMATICAL JOURNAL, 1966, 33 (03) : 499 - +
  • [6] LEXICOGRAPHIC PRODUCT OF GRAPHS
    IMRICH, W
    ARCHIV DER MATHEMATIK, 1969, 20 (03) : 228 - &
  • [7] LEXICOGRAPHIC PRODUCT OF GRAPHS
    SABIDUSSI, G
    DUKE MATHEMATICAL JOURNAL, 1961, 28 (04) : 573 - &
  • [8] The geodesic-transversal problem
    Manuel, Paul
    Bresar, Bostjan
    Klavzar, Sandi
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413
  • [9] On 2-Resolving Dominating Sets in the Join, Corona and Lexicographic Product of two Graphs
    Cabaro, Jean
    Rara, Helen
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1417 - 1425
  • [10] On 2-Resolving Hop Dominating Sets in the Join, Corona and Lexicographic Product of Graphs
    Mahistrado, Angelica Mae
    Rara, Helen
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1982 - 1997