Constrained Projection Approximation Algorithms for Principal Component Analysis

被引:0
|
作者
Seungjin Choi
Jong-Hoon Ahn
Andrzej Cichocki
机构
[1] Pohang University of Science and Technology,Department of Computer Science
[2] Pohang University of Science and Technology,Department of Physics
[3] Brain Science Institute,Advanced Brain Signal Processing Lab
[4] RIKEN,undefined
来源
Neural Processing Letters | 2006年 / 24卷
关键词
natural power iteration; principal component analysis; projection approximation; reconstruction error; subspace analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new error measure, integrated reconstruction error (IRE) and show that the minimization of IRE leads to principal eigenvectors (without rotational ambiguity) of the data covariance matrix. Then, we present iterative algorithms for the IRE minimization, where we use the projection approximation. The proposed algorithm is referred to as COnstrained Projection Approximation (COPA) algorithm and its limiting case is called COPAL. Numerical experiments demonstrate that these algorithms successfully find exact principal eigenvectors of the data covariance matrix.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [21] A constrained EM algorithm for principal component analysis
    Ahn, JH
    Oh, JH
    NEURAL COMPUTATION, 2003, 15 (01) : 57 - 65
  • [22] Approximation bounds for sparse principal component analysis
    d'Aspremont, Alexandre
    Bach, Francis
    El Ghaoui, Laurent
    MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) : 89 - 110
  • [23] Approximation bounds for sparse principal component analysis
    Alexandre d’Aspremont
    Francis Bach
    Laurent El Ghaoui
    Mathematical Programming, 2014, 148 : 89 - 110
  • [24] A class of learning algorithms for principal component analysis and minor component analysis
    Zhang, QF
    Leung, YW
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 200 - 204
  • [25] A class of learning algorithms for principal component analysis and minor component analysis
    Zhang, QF
    Leung, YW
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (02): : 529 - 533
  • [26] Convergence study of principal component analysis algorithms
    Chatterjee, C
    Roychowdhury, VP
    Chong, EKP
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1798 - 1803
  • [27] GOSSIP ALGORITHMS FOR PRINCIPAL COMPONENT ANALYSIS IN NETWORKS
    Ghadban, Nisrine
    Honeine, Paul
    Mourad-Chehade, Farah
    Farah, Joumana
    Francis, Clovis
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2366 - 2370
  • [28] Convergence of algorithms used for principal component analysis
    Junhua Zhang
    Hanfu Chen
    Science in China Series E: Technological Sciences, 1997, 40 : 597 - 604
  • [29] SPARSE PRINCIPAL COMPONENT ANALYSIS VIA VARIABLE PROJECTION
    Erichson, N. Benjamin
    Zheng, Peng
    Manohar, Krithika
    Brunton, Steven L.
    Kutz, J. Nathan
    Aravkin, Aleksandr Y.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (02) : 977 - 1002
  • [30] Convergence of algorithms used for principal component analysis
    张俊华
    陈翰馥
    Science in China(Series E:Technological Sciences), 1997, (06) : 597 - 604