Constrained Projection Approximation Algorithms for Principal Component Analysis

被引:0
|
作者
Seungjin Choi
Jong-Hoon Ahn
Andrzej Cichocki
机构
[1] Pohang University of Science and Technology,Department of Computer Science
[2] Pohang University of Science and Technology,Department of Physics
[3] Brain Science Institute,Advanced Brain Signal Processing Lab
[4] RIKEN,undefined
来源
Neural Processing Letters | 2006年 / 24卷
关键词
natural power iteration; principal component analysis; projection approximation; reconstruction error; subspace analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new error measure, integrated reconstruction error (IRE) and show that the minimization of IRE leads to principal eigenvectors (without rotational ambiguity) of the data covariance matrix. Then, we present iterative algorithms for the IRE minimization, where we use the projection approximation. The proposed algorithm is referred to as COnstrained Projection Approximation (COPA) algorithm and its limiting case is called COPAL. Numerical experiments demonstrate that these algorithms successfully find exact principal eigenvectors of the data covariance matrix.
引用
收藏
页码:53 / 65
页数:12
相关论文
共 50 条
  • [1] Constrained projection approximation algorithms for principal component analysis
    Choi, Seungjin
    Ahn, Jong-Hoon
    Cichocki, Andrzej
    NEURAL PROCESSING LETTERS, 2006, 24 (01) : 53 - 65
  • [2] Algorithms for Projection - Pursuit robust principal component analysis
    Croux, C.
    Filzmoser, P.
    Oliveira, M. R.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 87 (02) : 218 - 225
  • [3] Exact and Approximation Algorithms for Sparse Principal Component Analysis
    Li, Yongchun
    Xie, Weijun
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [4] Principal Component Projection Without Principal Component Analysis
    Frostig, Roy
    Musco, Cameron
    Musco, Christopher
    Sidford, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [5] Projection algorithms for nonconvex minimization with application to sparse principal component analysis
    William W. Hager
    Dzung T. Phan
    Jiajie Zhu
    Journal of Global Optimization, 2016, 65 : 657 - 676
  • [6] Projection algorithms for nonconvex minimization with application to sparse principal component analysis
    Hager, William W.
    Phan, Dzung T.
    Zhu, Jiajie
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (04) : 657 - 676
  • [7] Constrained Generalised Principal Component Analysis
    Chojnacki, Wojciech
    van den Hengel, Anton
    Brooks, Michael J.
    VISAPP 2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2006, : 206 - +
  • [8] Constrained nonmetric principal component analysis
    Yamagishi Y.
    Tanioka K.
    Yadohisa H.
    Behaviormetrika, 2019, 46 (2) : 313 - 332
  • [9] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [10] Gradient algorithms for principal component analysis
    Mahony, RE
    Helmke, U
    Moore, JB
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 37 : 430 - 450