共 50 条
Positive solutions of a class of nonlinear elliptic eigenvalue problems
被引:0
|作者:
Zhaoli Liu
机构:
[1] Department of Mathematics,
[2] Shandong University,undefined
[3] Jinan,undefined
[4] Shandong 250100,undefined
[5] People's Republic of China (e-mail: zliu@sdu.edu.cn)
,undefined
来源:
关键词:
Eigenvalue Problem;
Dirichlet Problem;
Suitable Condition;
Standard Argument;
Natural Order;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper is mainly concerned with the natural order relationship between positive solutions of the elliptic eigenvalue Dirichlet problem: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$-\Delta u=\lambda f(u)$\end{document} in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\Omega$\end{document} and u=0 on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\partial\Omega$\end{document}. Under suitable conditions, we prove that there are 2m-1 positive solutions satisfying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\hat u_1 < u^*_2 < \hat u_2 < \cdots < u^*_m < \hat u_m$\end{document}. It seems that standard arguments do not provide such a result. Several authors, including P. Hess, proved the existence of equal number of positive solutions without such a relationship between them. We also prove that in Hess's result as well as in ours some sufficient condition is also necessary if the domain possesses a particular shape. At last, as an illustrative example, we study the diagram of positive solutions when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\lambda f(u)=\lambda (d+ cos u)$\end{document} with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\lambda$\end{document} and d being both parameters.
引用
收藏
页码:663 / 686
页数:23
相关论文