Positive solutions of a class of nonlinear elliptic eigenvalue problems

被引:0
|
作者
Zhaoli Liu
机构
[1] Department of Mathematics,
[2] Shandong University,undefined
[3] Jinan,undefined
[4] Shandong 250100,undefined
[5] People's Republic of China (e-mail: zliu@sdu.edu.cn) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 242卷
关键词
Eigenvalue Problem; Dirichlet Problem; Suitable Condition; Standard Argument; Natural Order;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is mainly concerned with the natural order relationship between positive solutions of the elliptic eigenvalue Dirichlet problem: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $-\Delta u=\lambda f(u)$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} and u=0 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\partial\Omega$\end{document}. Under suitable conditions, we prove that there are 2m-1 positive solutions satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\hat u_1 < u^*_2 < \hat u_2 < \cdots < u^*_m < \hat u_m$\end{document}. It seems that standard arguments do not provide such a result. Several authors, including P. Hess, proved the existence of equal number of positive solutions without such a relationship between them. We also prove that in Hess's result as well as in ours some sufficient condition is also necessary if the domain possesses a particular shape. At last, as an illustrative example, we study the diagram of positive solutions when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda f(u)=\lambda (d+ cos u)$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document} and d being both parameters.
引用
收藏
页码:663 / 686
页数:23
相关论文
共 50 条