On Latent Trait Estimation in Multidimensional Compensatory Item Response Models

被引:0
|
作者
Chun Wang
机构
[1] University of Minnesota,
来源
Psychometrika | 2015年 / 80卷
关键词
maximum likelihood estimation (MLE); weighted maximum likelihood estimation (WLE); multivariate weighted maximum likelihood estimation (MWLE); Bayesian estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Making inferences from IRT-based test scores requires accurate and reliable methods of person parameter estimation. Given an already calibrated set of item parameters, the latent trait could be estimated either via maximum likelihood estimation (MLE) or using Bayesian methods such as maximum a posteriori (MAP) estimation or expected a posteriori (EAP) estimation. In addition, Warm’s (Psychometrika 54:427–450, 1989) weighted likelihood estimation method was proposed to reduce the bias of the latent trait estimate in unidimensional models. In this paper, we extend the weighted MLE method to multidimensional models. This new method, denoted as multivariate weighted MLE (MWLE), is proposed to reduce the bias of the MLE even for short tests. MWLE is compared to alternative estimators (i.e., MLE, MAP and EAP) and shown, both analytically and through simulations studies, to be more accurate in terms of bias than MLE while maintaining a similar variance. In contrast, Bayesian estimators (i.e., MAP and EAP) result in biased estimates with smaller variability.
引用
收藏
页码:428 / 449
页数:21
相关论文
共 50 条
  • [41] A Framework for Dimensionality Assessment for Multidimensional Item Response Models
    Svetina, Dubravka
    Levy, Roy
    EDUCATIONAL ASSESSMENT, 2014, 19 (01) : 35 - 57
  • [42] Local Minima in Multidimensional Item Response Theory Models
    Nguyen, Hoang V.
    Waller, Niels G.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (01) : 147 - 147
  • [43] DSM criteria for major depression: evaluating symptom patterns using latent-trait item response models
    Aggen, SH
    Neale, MC
    Kendler, KS
    PSYCHOLOGICAL MEDICINE, 2005, 35 (04) : 475 - 487
  • [44] A Class of Multidimensional Latent Class IRT Models for Ordinal Polytomous Item Responses
    Bacci, Silvia
    Bartolucci, Francesco
    Gnaldi, Michela
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (04) : 787 - 800
  • [45] A Note on Improving Variational Estimation for Multidimensional Item Response Theory
    Ma, Chenchen
    Ouyang, Jing
    Wang, Chun
    Xu, Gongjun
    PSYCHOMETRIKA, 2024, 89 (01) : 172 - 204
  • [46] A Note on Improving Variational Estimation for Multidimensional Item Response Theory
    Chenchen Ma
    Jing Ouyang
    Chun Wang
    Gongjun Xu
    Psychometrika, 2024, 89 : 172 - 204
  • [47] A note on improving EAP trait estimation in oblique factor-analytic and item response theory models
    Ferrando, Pere J.
    Lorenzo-Seva, Urbano
    PSICOLOGICA, 2016, 37 (02): : 235 - 247
  • [48] Interval Estimation of Latent Variable Scores in Item Response Theory
    Liu, Yang
    Yang, Ji Seung
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2018, 43 (03) : 259 - 285
  • [49] The Recovery of Correlation Between Latent Abilities Using Compensatory and Noncompensatory Multidimensional IRT Models
    Fu, Yanyan
    Strachan, Tyler
    Ip, Edward H.
    Willse, John T.
    Chen, Shyh-Huei
    Ackerman, Terry
    INTERNATIONAL JOURNAL OF TESTING, 2020, 20 (02) : 169 - 186
  • [50] Multidimensional multiple group IRT models with skew normal latent trait distributions
    Padilla, Juan L.
    Azevedo, Caio L. N.
    Lachos, Victor H.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 250 - 268