Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation

被引:0
|
作者
V. Yamakov
D. Wolf
S. R. Phillpot
A. K. Mukherjee
H. Gleiter
机构
[1] Argonne National Laboratory,Materials Science Division
[2] University of California,Division of Materials Science & Engineering, Department of Chemical Engineering and Materials Science
[3] Institut für Nanotechnologie,Department of Materials Science and Engineering
[4] Forschungszentrum Karlsruhe,undefined
[5] National Institute of Aerospace,undefined
[6] University of Florida,undefined
来源
Nature Materials | 2004年 / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
引用
收藏
页码:43 / 47
页数:4
相关论文
共 50 条
  • [21] Deformation mechanism map of nanocrystalline metallic materials
    Kim, Hyoung Seop
    THERMEC 2006, PTS 1-5, 2007, 539-543 : 2816 - 2821
  • [22] Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation
    Haslam, AJ
    Moldovan, D
    Yamakov, V
    Wolf, D
    Phillpot, SR
    Gleiter, H
    ACTA MATERIALIA, 2003, 51 (07) : 2097 - 2112
  • [23] Effect of pre-twinning on deformation mechanism of [0001]-textured nanocrystalline Mg by molecular dynamics simulation
    Zhao, Hui
    Peng, Yan
    Chen, Xianhua
    Pan, Fusheng
    Shi, Baodong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 5872 - 5883
  • [24] Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation
    Yamakov, V
    Wolf, D
    Phillpot, SR
    Gleiter, H
    ACTA MATERIALIA, 2002, 50 (01) : 61 - 73
  • [25] A MOLECULAR-DYNAMICS SIMULATION OF HCL - A STUDY OF THE VIBRATIONAL DEPHASING MECHANISM
    LAAKSONEN, A
    WESTLUND, PO
    MOLECULAR PHYSICS, 1991, 73 (03) : 663 - 683
  • [26] ON THE MECHANISM OF GRAIN-BOUNDARY MIGRATION IN METALS - A MOLECULAR-DYNAMICS STUDY
    RICKMAN, JM
    PHILLPOT, SR
    WOLF, D
    WOODRASKA, DL
    YIP, S
    JOURNAL OF MATERIALS RESEARCH, 1991, 6 (11) : 2291 - 2304
  • [27] Molecular-Dynamics Simulation of the Interaction Processes of Pulsed Ion Beams with Metals
    I. V. Puzynin
    T. P. Puzynina
    I. G. Hristov
    R. D. Hristova
    Z. K. Tukhliev
    Z. A. Sharipov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020, 14 : 1342 - 1345
  • [28] Molecular-Dynamics Simulation of the Interaction Processes of Pulsed Ion Beams with Metals
    Puzynin, I., V
    Puzynina, T. P.
    Hristov, I. G.
    Hristova, R. D.
    Tukhliev, Z. K.
    Sharipov, Z. A.
    JOURNAL OF SURFACE INVESTIGATION, 2020, 14 (06): : 1342 - 1345
  • [29] Molecular dynamics simulation of deformation and failure of nanocrystals of bcc metals
    Kotrechko, S. A.
    Filatov, A. V.
    Ovsjannikov, A. V.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2006, 45 (02) : 92 - 99
  • [30] MOLECULAR-DYNAMICS STUDY OF POLYMER DEFORMATION
    MELKER, AI
    VOROBEVA, TV
    GOVOROV, SV
    FIZIKA TVERDOGO TELA, 1991, 33 (01): : 76 - 80