Third order convergent time discretization for parabolic optimal control problems with control constraints

被引:0
|
作者
Andreas Springer
Boris Vexler
机构
[1] Technische Universität München,Lehrstuhl für Optimale Steuerung, Fakultät für Mathematik
关键词
Optimal control; Heat equation; Control constraints; Discontinuous Galerkin time stepping; Error estimates; Post-processing; Variational control discretization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a priori error analysis for a discretization of a linear quadratic parabolic optimal control problem with box constraints on the time-dependent control variable. For such problems one can show that a time-discrete solution with second order convergence can be obtained by a first order discontinuous Galerkin time discretization for the state variable and either the variational discretization approach or a post-processing strategy for the control variable. Here, by combining the two approaches for the control variable, we demonstrate that almost third order convergence with respect to the size of the time steps can be achieved.
引用
收藏
页码:205 / 240
页数:35
相关论文
共 50 条
  • [21] SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH ENERGY REGULARIZATION
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 675 - 695
  • [22] ON THE OPTIMAL CONTROL PROBLEMS WITH CHARACTERISTIC TIME CONTROL CONSTRAINTS
    Yu, Changjun
    Su, Shuxuan
    Bai, Yanqin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (02) : 1305 - 1320
  • [23] Relaxed discretization methods for nonconvex semilinear parabolic optimal control problems
    Chryssoverghi, I
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 236 - 243
  • [24] Error estimates of variational discretization for semilinear parabolic optimal control problems
    Hou, Chunjuan
    Lu, Zuliang
    Chen, Xuejiao
    Huang, Fei
    AIMS MATHEMATICS, 2021, 6 (01): : 772 - 793
  • [25] Adaptive variational discretization approximation method for parabolic optimal control problems
    Yuelong Tang
    Yuchun Hua
    Journal of Inequalities and Applications, 2020
  • [26] Time-optimal control in a third-order system with asymmetric constraints
    Akulenko, LD
    Kostin, GV
    DOKLADY MATHEMATICS, 2000, 61 (03) : 454 - 458
  • [27] Adaptive variational discretization approximation method for parabolic optimal control problems
    Tang, Yuelong
    Hua, Yuchun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [28] INDIRECT MULTIPLE SHOOTING FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH CONTROL CONSTRAINTS
    Carraro, T.
    Geiger, M.
    Rannacher, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A452 - A481
  • [29] SECOND ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS
    Krumbiegel, K.
    Rehberg, J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) : 304 - 331
  • [30] A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems
    Meidner, D.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 645 - 652