On the first simultaneous sign change for Fourier coefficients associated with Hecke–Maass forms

被引:0
|
作者
Guodong Hua
机构
[1] Shandong University,School of Mathematics
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Hecke–Maass forms; Fourier coefficients; Sign changes; Primary 11F41; Secondary 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two distinct Hecke–Maass cusp forms of weight zero for SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document} with Laplacian eigenvalues 14+u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+u^{2}$$\end{document} and 14+v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+v^{2}$$\end{document}, respectively. Let λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} and λg(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{g}(n)$$\end{document} be the real normalized Fourier coefficients satisfies λf(1)=λg(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(1)=\lambda _{g}(1)=1$$\end{document}. Then in this paper we give a quantitative result concerning the sign changes of {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _{f}(n)\lambda _{g}(n)\}_{n\in \mathbb {N}}$$\end{document} in a short interval. We refine the results given by Kumari and Sengupta (Ramanujan J 55:205–218, 2021) concerning the first sign change of the sequence {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _{f}(n)\lambda _{g}(n)\}_{n\in \mathbb {N}}$$\end{document}.
引用
收藏
页码:559 / 570
页数:11
相关论文
共 50 条