We show that, with the exception of the symmetric derivative, each limit of the form limh→0Af(x+ah)+Bf(x+bh)h,(A+B=0,Aa+Bb=1),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$\end{document}is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.