A differentiability criterion for continuous functions

被引:0
|
作者
Stefan Catoiu
机构
[1] DePaul University,Department of Mathematics
来源
关键词
Generalized Riemann derivative; -derivative; Peano derivative; Primary: 26A24; Secondary: 26A27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, with the exception of the symmetric derivative, each limit of the form limh→0Af(x+ah)+Bf(x+bh)h,(A+B=0,Aa+Bb=1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$\end{document}is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.
引用
收藏
页码:285 / 291
页数:6
相关论文
共 50 条