Jensen inequalities for P-class functions

被引:0
|
作者
J. Rooin
S. Habibzadeh
M. S. Moslehian
机构
[1] Institute for Advanced Studies in Basic Sciences (IASBS),Department of Mathematics
[2] Tusi Mathematical Research Group (TMRG),Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS)
[3] Ferdowsi University of Mashhad,undefined
来源
关键词
-class function; Jensen inequality; Norm inequality; Operator inequality; Spectral measure; 47A30; 47A60; 47A63; 26A51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give some characterizations for P-class functions. Then giving a Hermite–Hadamard type inequality for P-class functions, we prove equivalency of some significant metrics in normed linear spaces. We also obtain an operator version of the Jensen inequality for P-class functions. Introducing operator (mid) P-class functions, we present some characterizations for such functions.
引用
收藏
页码:261 / 273
页数:12
相关论文
共 50 条
  • [32] The distribution of second p-class groups on coclass graphs
    Mayer, Daniel C.
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2013, 25 (02): : 401 - 456
  • [33] Hermite-Hadamard and Jensen's type inequalities for modified (p, h)-convex functions
    Feng, Baoli
    Ghafoor, Mamoona
    Chu, Yu Ming
    Qureshi, Muhammad Imran
    Feng, Xue
    Yao, Chuang
    Qiao, Xing
    AIMS MATHEMATICS, 2020, 5 (06): : 6959 - 6971
  • [34] On arithmetically equivalent fields with distinct p-class numbers
    de Smit, B
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 417 - 424
  • [35] Heuristics for p-class towers of imaginary quadratic fields
    Boston, Nigel
    Bush, Michael R.
    Hajir, Farshid
    MATHEMATISCHE ANNALEN, 2017, 368 (1-2) : 633 - 669
  • [36] HEURISTICS FOR p-CLASS TOWERS OF REAL QUADRATIC FIELDS
    Boston, Nigel
    Bush, Michael R.
    Hajir, Farshid
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1429 - 1452
  • [38] JENSEN-TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS
    Khodabakhshian, H.
    Goudarzi, N.
    Safshekan, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (02): : 113 - 123
  • [39] Jensen-Mercer Operator Inequalities Involving Superquadratic Functions
    Anjidani, E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [40] Jensen-Steffensen's and related inequalities for superquadratic functions
    Abramovich, S.
    Banic, S.
    Matic, M.
    Pecaric, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 23 - 41