Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries

被引:0
|
作者
Priya Mudgal
Himani Arora
Jayashree Pati
Manish K. Singh
Mahantesh Khetri
Rajendra S. Dhaka
机构
[1] Indian Institute of Technology Delhi,Department of Physics
关键词
Transition metal dichalcogenide (TMD); Sodium-ion batteries (SIBs); Anode material; MoSeTe; Electrochemical performance;
D O I
暂无
中图分类号
学科分类号
摘要
Sodium ion batteries (SIBs) are considered as an efficient alternative for lithium-ion batteries (LIBs) owing to the natural abundance and low cost of sodium than lithium. In this context, the anode materials play a vital role in rechargeable batteries to acquire high energy and power density. In order to demonstrate transition metal dichalcogenide as potential anode materials, we have synthesized MoSeTe sample by conventional flux method, and the structure and morphology are characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. These characterisations confirm the hexagonal crystal symmetry with p63/mmc space group and layered morphology of MoSeTe. We investigate the electrochemical performance of a MoSeTe as a negative electrode (anode) for SIBs in the working potential range of 0.01 to 3.0 V. In a half-cell configuration, the MoSeTe as an anode and Na metal as counter/reference electrode exhibits significant initial specific discharge capacities of around 475 and 355 mAh g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} at current densities of 50 and 100 mA g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}, respectively. However, the capacity degraded significantly like ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx\,$$\end{document}200 mAh g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} in 2nd cycle, but exhibited ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx\,$$\end{document} 100% Coulombic efficiency, which suggest for further modification in this material to improve its stability. The cyclic voltammetry study reveals the reversibility of the material after 1st cycle, resulting no change in the initial peak positions. The electrochemical impedance spectroscopy measurements affirm the smaller charge transfer resistance of fresh cells than the cells after 10th cycle. Moreover, the extracted diffusion coefficient is found to be of the order of 10-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-14}$$\end{document} cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}.
引用
收藏
页码:430 / 438
页数:8
相关论文
共 50 条
  • [21] Anode performance of mesocarbon microbeads for sodium-ion batteries
    Song, Li-Jun
    Liu, Shuang-Shuang
    Yu, Bao-Jun
    Wang, Cheng-Yang
    Li, Ming-Wei
    CARBON, 2015, 95 : 972 - 977
  • [22] New Electrochemical Systems for Sodium-Ion Batteries
    Kulova, T. L.
    Gavrilin, I. M.
    Skundin, A. M.
    Kovtushenko, E. V.
    Kudryashova, Yu. O.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 98 (04) : 771 - 776
  • [23] Anode materials for fast charging sodium-ion batteries
    He, Zidong
    Huang, Yujie
    Liu, Huaxin
    Geng, Zhenglei
    Li, Yujin
    Li, Simin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2024, 129
  • [24] Expanded graphite as superior anode for sodium-ion batteries
    Yang Wen
    Kai He
    Yujie Zhu
    Fudong Han
    Yunhua Xu
    Isamu Matsuda
    Yoshitaka Ishii
    John Cumings
    Chunsheng Wang
    Nature Communications, 5
  • [25] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [26] Expanded graphite as superior anode for sodium-ion batteries
    Wen, Yang
    He, Kai
    Zhu, Yujie
    Han, Fudong
    Xu, Yunhua
    Matsuda, Isamu
    Ishii, Yoshitaka
    Cumings, John
    Wang, Chunsheng
    NATURE COMMUNICATIONS, 2014, 5
  • [27] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [28] Investigation of hexagonal boron nitride monolayer with pores as an anode material for sodium-ion batteries
    Ponce, Sofia Carolina Godoy
    Ajaj, Yathrib
    Ali, Sadek H.
    Yadav, Anupam
    Kaur, Mandeep
    Zaki, Shaima Haithem
    Abbas, Jamal K.
    Abdulridui, Hussam Bdali
    Lasisi, Ayodele
    DIAMOND AND RELATED MATERIALS, 2024, 145
  • [29] Carbon-coated vanadium selenide as anode for lithium-ion batteries and sodium-ion batteries with enhanced electrochemical performance
    Yang, Xinhui
    Zhang, Zhian
    MATERIALS LETTERS, 2017, 189 : 152 - 155
  • [30] Significant Enhancement in the Electrochemical Performances of a Nanostructured Sodium Titanate Anode by Molybdenum Doping for Applications as Sodium-Ion Batteries
    Chandel, Sakshee
    Wang, Chunting
    Singh, Satendra Pal
    Wang, Nana
    Rai, Alok Kumar
    ACS APPLIED NANO MATERIALS, 2022, 5 (12) : 18591 - 18602