Optimal Feedback Control for a Thermoviscoelastic Model of the Motion of Water Polymer Solutions

被引:0
|
作者
Zvyagin V.G. [1 ]
Zvyagin A.V. [1 ]
机构
[1] Voronezh State University, Voronezh
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
existence theorem; non-Newtonian hydrodynamics; optimal feedback control; thermoviscoelasticity;
D O I
10.3103/S1055134419020044
中图分类号
学科分类号
摘要
We study an optimal feedback control problem for an initial boundary value problem of a thermoviscoelastic model describing the motion of weakly concentrated water polymer solutions in the presence of dependence of the viscosity on the temprature. We prove the existence of an optimal solution minimizing to a given bounded lower semicontinuous quality functional. For proving the existence of an optimal solution, we use the topological approximation method for studying problems in hydrodynamics. © 2019, Allerton Press, Inc.
引用
收藏
页码:137 / 152
页数:15
相关论文
共 50 条
  • [31] Direct Integrability for State Feedback Optimal Control with Singular Solutions
    Di Giamberardino, Paolo
    Iacoviello, Daniela
    INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO 2018), 2020, 613 : 482 - 502
  • [32] Optimal control of phytoplankton–fish model with the impulsive feedback control
    Zhong Zhao
    Liuyong Pang
    Xinyu Song
    Nonlinear Dynamics, 2017, 88 : 2003 - 2011
  • [33] Optimal control for a class of mechanical thermoviscoelastic frictional contact problems
    Denkowski, Zdzislaw
    Migorski, Stanislaw
    Ochal, Anna
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 611 - 632
  • [34] OPTIMAL FEEDBACK CONTROL OF A FLEXIBLE NEEDLE UNDER ANATOMICAL MOTION UNCERTAINTY
    Sovizi, Javad
    Kumar, Suren
    Krovi, Venkat
    PROCEEDINGS OF THE ASME 8TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2015, VOL 2, 2016,
  • [35] Feedback tracking control of optimal reference trajectories for spacecraft relative motion
    Vepa, R.
    ADVANCES IN SPACE RESEARCH, 2022, 69 (09) : 3478 - 3489
  • [36] Existence and Exponential Stability for a Thermoviscoelastic Equation with Boundary Output Feedback Control
    Kang, Yong Han
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (02): : 517 - 527
  • [37] GLOBAL SOLUTIONS OF A MODEL OF PHASE TRANSITIONS FOR DISSIPATIVE THERMOVISCOELASTIC MATERIALS
    Assuncao, Welington Vieira
    Boldrini, Jose Luiz
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [38] Pullback attractors for the model of motion of dilute aqueous polymer solutions
    Zvyagin, V. G.
    Kondratyev, S. K.
    IZVESTIYA MATHEMATICS, 2015, 79 (04) : 645 - 667
  • [39] Pullback attractors for a model of motion of weak aqueous polymer solutions
    Zvyagin, V. G.
    Kondratyev, S. K.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 660 - 662
  • [40] On the Voitkunskii Amfilokhiev Pavlovskii Model of Motion of Aqueous Polymer Solutions
    V. V. Pukhnachev
    O. A. Frolovskaya
    Proceedings of the Steklov Institute of Mathematics, 2018, 300 : 168 - 181