On the combinatorial structure of 0/1-matrices representing nonobtuse simplices

被引:0
|
作者
Jan Brandts
Abdullah Cihangir
机构
[1] University of Amsterdam,Korteweg
来源
关键词
acute simplex; nonobtuse simplex; orthogonal simplex; 0/1-matrix; doubly stochastic matrix; fully indecomposable matrix; partly decomposable matrix; 05B20;
D O I
暂无
中图分类号
学科分类号
摘要
A 0/1-simplex is the convex hull of n+1 affinely independent vertices of the unit n-cube In. It is nonobtuse if none of its dihedral angles is obtuse, and acute if additionally none of them is right. Acute 0/1-simplices in In can be represented by 0/1-matrices P of size n × n whose Gramians G = P⊤P have an inverse that is strictly diagonally dominant, with negative off-diagonal entries.
引用
收藏
页码:1 / 31
页数:30
相关论文
共 50 条
  • [21] (0, ±1) ideal matrices
    Nobili, Paolo
    Sassano, Antonio
    Mathematical Programming, Series B, 1998, 80 (03): : 265 - 281
  • [22] (0, ±1) ideal matrices
    Paolo Nobili
    Antonio Sassano
    Mathematical Programming, 1998, 80 : 265 - 281
  • [23] On perfect 0,+/-1 matrices
    Boros, E
    Cepek, O
    DISCRETE MATHEMATICS, 1997, 165 : 81 - 100
  • [24] (0, ±1) ideal matrices
    Nobili, P
    Sassano, A
    MATHEMATICAL PROGRAMMING, 1998, 80 (03) : 265 - 281
  • [25] (0,1)-MATRICES
    JAGERS, AA
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (06): : 505 - 506
  • [26] IDEAL 0, 1 MATRICES
    CORNUEJOLS, G
    NOVICK, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (01) : 145 - 157
  • [27] COMBINATORIAL REPRESENTATION OF 0/1 ARRAYS
    BARTHELEMY, JP
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1992, 27 (3-4) : 370 - 370
  • [28] 0-1 matrices with zero trace whose squares are 0-1 matrices
    Huang, Zejun
    Lyu, Zhenhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 565 : 156 - 176
  • [29] Polyhedral preduals of l1 and their representing matrices
    Bandyopadhyay, Pradipta
    Dutta, S.
    Sensarma, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 1082 - 1089
  • [30] (0,1)-MATRICES AND GENERALIZED ULTRAMETRIC MATRICES
    XIANG Shuhuang(Department of Mathematics
    SystemsScienceandMathematicalSciences, 1999, (02) : 154 - 158