Biclustering multivariate discrete longitudinal data

被引:0
|
作者
M. Alfó
M. F. Marino
F. Martella
机构
[1] Sapienza,
[2] University of Rome,undefined
[3] University of Florence,undefined
来源
Statistics and Computing | 2024年 / 34卷
关键词
Finite mixtures; Model-based clustering; Three-way data; Generalized linear models; EM algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
A model-based biclustering method for multivariate discrete longitudinal data is proposed. We consider a finite mixture of generalized linear models to cluster units and, within each mixture component, we adopt a flexible and parsimonious parameterization of the component-specific canonical parameter to define subsets of variables (segments) sharing common dynamics over time. We develop an Expectation-Maximization-type algorithm for maximum likelihood estimation of model parameters. The performance of the proposed model is evaluated on a large scale simulation study, where we consider different choices for the sample the size, the number of measurement occasions, the number of components and segments. The proposal is applied to Italian crime data (font ISTAT) with the aim to detect areas sharing common longitudinal trajectories for specific subsets of crime types. The identification of such biclusters may potentially be helpful for policymakers to make decisions on safety.
引用
收藏
相关论文
共 50 条
  • [41] A model for incomplete longitudinal multivariate ordinal data
    Liu, Li C.
    STATISTICS IN MEDICINE, 2008, 27 (30) : 6299 - 6309
  • [42] QUANTITATIVE GENETIC MODELS FOR MULTIVARIATE LONGITUDINAL DATA
    HANIS, CL
    SING, CF
    AMERICAN JOURNAL OF HUMAN GENETICS, 1981, 33 (06) : A138 - A138
  • [43] Transition models for multivariate longitudinal binary data
    Zeng, Leilei
    Cook, Richard J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 211 - 223
  • [44] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [45] Common predictor effects for multivariate longitudinal data
    Jia, Juan
    Weiss, Robert E.
    STATISTICS IN MEDICINE, 2009, 28 (13) : 1793 - 1804
  • [46] Bayesian consensus clustering for multivariate longitudinal data
    Lu, Zihang
    Lou, Wendy
    STATISTICS IN MEDICINE, 2022, 41 (01) : 108 - 127
  • [47] Dynamic modeling for multivariate functional and longitudinal data
    Hao, Siteng
    Lin, Shu-Chin
    Wang, Jane-Ling
    Zhong, Qixian
    JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [48] Fast approximate inference for multivariate longitudinal data
    Hughes, David M.
    Garcia-Finana, Marta
    Wand, Matt P.
    BIOSTATISTICS, 2022, 24 (01) : 177 - 192
  • [49] On Biclustering of Gene Expression Data
    Mukhopadhyay, Anirban
    Maulik, Ujjwal
    Bandyopadhyay, Sanghamitra
    CURRENT BIOINFORMATICS, 2010, 5 (03) : 204 - 216
  • [50] On Biclustering of Gene Expression Data
    Mounir, Mahmoud
    Hamdy, Mohamed
    2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 641 - 648