Palatini formulation of f(R, T) gravity theory, and its cosmological implications

被引:0
|
作者
Jimin Wu
Guangjie Li
Tiberiu Harko
Shi-Dong Liang
机构
[1] Sun Yat-Sen University,School of Physics
[2] Babes-Bolyai University,Department of Physics
[3] University College London,Department of Mathematics
[4] State Key Laboratory of Optoelectronic Material and Technology,undefined
[5] Guangdong Province Key Laboratory of Display Material and Technology,undefined
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Palatini formulation of f(R, T) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f(R, T) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type f=R-α2/R+g(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=R-\alpha ^2/R+g(T)$$\end{document} and f=R+α2R2+g(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=R+\alpha ^2R^2+g(T)$$\end{document} are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.
引用
收藏
相关论文
共 50 条
  • [31] Cosmological models for f (R, T) - A(φ) gravity
    Santos, Joao R. L.
    da Costa, S. Santos
    Santos, Romario S.
    PHYSICS OF THE DARK UNIVERSE, 2023, 42
  • [32] Cosmological inviability of f (R, T) gravity
    Velten, Hermano
    Carames, Thiago R. P.
    PHYSICAL REVIEW D, 2017, 95 (12)
  • [33] Consistency of f(R)=√R2-R02 gravity with cosmological observations in the Palatini formalism
    Movahed, M. Sadegh
    Baghram, Shant
    Rahvar, Sohrab
    PHYSICAL REVIEW D, 2007, 76 (04)
  • [34] Cosmological implications of the constant jerk parameter in f (Q, T) gravity theory
    Myrzakulov, N.
    Koussour, M.
    Alfedeel, Alnadhief H. A.
    Elkhair, H. M.
    CHINESE JOURNAL OF PHYSICS, 2023, 86 : 300 - 312
  • [35] Dynamics of magnetized string cosmological model in f(R,T) gravity theory
    Ram, Shri
    Chandel, S.
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 355 (01) : 195 - 202
  • [36] Kantowski-Sachs Cosmological Model in f(R, T) Theory of Gravity
    Rao, V. U. M.
    Suryanarayana, G.
    AFRICAN REVIEW OF PHYSICS, 2015, 10 : 139 - 143
  • [37] Dynamics of magnetized string cosmological model in f(R,T) gravity theory
    Shri Ram
    S. Chandel
    Astrophysics and Space Science, 2015, 355 : 195 - 202
  • [38] Self-similar cosmological solutions in f(R, T) gravity theory
    Belinchon, Jose Antonio
    Gonzalez, Carlos
    Dib, Sami
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (13)
  • [39] Stability analysis of neutron stars in Palatini f(R, T) gravity
    M. Z. Bhatti
    Z. Yousaf
    General Relativity and Gravitation, 2019, 51
  • [40] The anisotropic cosmological models in f(R, T) gravity with Λ(T)
    Chaubey, R.
    Shukla, A. K.
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04):