Uniform modeling of parameter dependent nonlinear systems

被引:0
|
作者
Najmeh Eghbal
Naser Pariz
Ali Karimpour
机构
[1] Ferdowsi University of Mashhad,Department of Electrical Engineering
关键词
Parameter dependent nonlinear systems; Approximation method; Parameter dependent piecewise affine systems; Modeling; TP273;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call ‘multiplied simplices’. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.
引用
收藏
页码:850 / 858
页数:8
相关论文
共 50 条
  • [41] Spatiotemporal kernel-local-embedding modeling approach for nonlinear distributed parameter systems
    Xu, Bowen
    Lu, Xinjiang
    JOURNAL OF PROCESS CONTROL, 2022, 119 : 101 - 114
  • [42] A novel low-order spatiotemporal modeling method for nonlinear distributed parameter systems
    Lu, Xinjiang
    Xu, Bowen
    He, Pingzhong
    JOURNAL OF PROCESS CONTROL, 2021, 106 : 84 - 93
  • [43] Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems
    Yao, Chen
    Bollt, Erik M.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 227 (01) : 78 - 99
  • [44] Greatly enhancing the modeling accuracy for distributed parameter systems by nonlinear time/space separation
    Zhang, Hai-Tao
    Qi, Chen-Kun
    Zhou, Tao
    Li, Han-Xiong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 : 215 - 222
  • [45] Uniform Nonlinear Error Model Based on Gibbs Parameter for the INS
    Li, Kailong
    Li, Wenkui
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 7725 - 7735
  • [46] Compositional and uniform modeling of hybrid systems
    Benveniste, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) : 579 - 584
  • [47] SEMILINEAR EQUATION WITH NONLINEAR TERM DEPENDENT ON PARAMETER
    BARONE, E
    RICERCHE DI MATEMATICA, 1977, 26 (01) : 41 - 62
  • [48] MODELING OF ALLOY PHASE-DIAGRAMS FOR SYSTEMS WITH LATTICE-PARAMETER-DEPENDENT INTERACTIONS
    SANCHEZ, JM
    BAREFOOT, JR
    TIEN, JK
    JOURNAL OF METALS, 1982, 35 (12): : A65 - A66
  • [49] Nonlinear parameter estimation of excitation systems
    Bhaskar, R
    Crow, ML
    Ludwig, E
    Erickson, KT
    Shah, KS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1225 - 1231
  • [50] Parameter estimation methods for nonlinear systems
    Li, Junhong
    Ding, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4278 - 4287