Endpoint Boundedness of Linear Commutators on Local Hardy Spaces Over Metric Measure Spaces of Homogeneous Type

被引:0
|
作者
Xing Fu
Dachun Yang
Sibei Yang
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[3] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
关键词
Metric measure space of homogeneous type; Commutator; Local Hardy space; Wavelet; Bilinear decomposition; Calderón–Zygmund operator; Primary 42B20; Secondary 42B30; 47B47; 42C40; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\mathcal {X}}},d,\mu )$$\end{document} be a metric measure space of homogeneous type in the sense of Coifman and Weiss. In this article, the authors prove that the commutator, generated by any b∈BMO(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm {BMO}({\mathcal {X}})$$\end{document} and any Calderón–Zygmund operator, is bounded from the Hardy type space Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} to the local Hardy space Hρ1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_{\rho }({\mathcal {X}})$$\end{document} associated with an admissible function ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}, where Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} is the largest subspace of the Hardy space H1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({\mathcal {X}})$$\end{document} that ensures the boundedness of commutators from Hb1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_b({\mathcal {X}})$$\end{document} to L1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1({\mathcal {X}})$$\end{document}. Moreover, the authors investigate the relations between the Hardy space HL1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L({\mathbb {R}}^n)$$\end{document} associated with the Schrödinger operator L and the local Hardy space h1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^1({\mathbb {R}}^n)$$\end{document}. The major novelties of this article are that the main result even essentially improves the corresponding Euclidean case and, throughout this article, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is not assumed to satisfy the reverse doubling condition.
引用
收藏
页码:4092 / 4164
页数:72
相关论文
共 50 条
  • [21] Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces
    Chol RI
    Zhenqiu ZHANG
    Chinese Annals of Mathematics,Series B, 2019, (04) : 585 - 598
  • [22] Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces
    Chol Ri
    Zhenqiu Zhang
    Chinese Annals of Mathematics, Series B, 2019, 40 : 585 - 598
  • [23] Boundedness of Commutators of Marcinkiewicz Integrals on Nonhomogeneous Metric Measure Spaces
    Lu, Guanghui
    Tao, Shuangping
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [24] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    Science China(Mathematics), 2015, 58 (02) : 309 - 388
  • [25] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388
  • [26] BOUNDEDNESS OF COMMUTATORS RELATED TO MARCINKIEWICZ INTEGRALS ON HARDY TYPE SPACES
    Lu Shanzhen and Xu Lifang ( Beijing Normal University
    Analysis in Theory and Applications, 2004, (03) : 215 - 230
  • [27] Boundedness of commutators on homogeneous Herz spaces
    Department of Mathematics, Beijing Normal University, Beijing 100875, China
    不详
    Sci China Ser A, 10 (X3-1033):
  • [28] Boundedness of commutators on homogeneous Herz spaces
    Shanzhen Lu
    Lin Tang
    Dachun Yang
    Science in China Series A: Mathematics, 1998, 41 : 1023 - 1033
  • [29] Boundedness of commutators on homogeneous Herz spaces
    Lu, SZ
    Tang, L
    Yang, DC
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (10): : 1023 - 1033
  • [30] Boundedness of commutators on homogeneous Herz spaces
    陆善镇
    唐林
    杨大春
    Science China Mathematics, 1998, (10) : 1023 - 1033