Electrochemical mineralization of sodium dodecylbenzenesulfonate at boron doped diamond anodes

被引:0
|
作者
Elsa Weiss
Karine Groenen-Serrano
André Savall
机构
[1] Université Paul Sabatier,Laboratoire de Génie Chimique UMR 5503 CNRS
来源
关键词
Electrooxidation; Boron doped diamond; Dodecylbenzenesulfonate; Critical micelle concentration;
D O I
暂无
中图分类号
学科分类号
摘要
Results are reported of the electrochemical oxidation of sodium dodecylbenzenesulfonate (SDBS), a common surfactant, at boron-doped diamond anodes. The measured critical micelle concentration (CMC) for SDBS in water at 24 °C was almost 150 mg dm−3, but this decreased to almost 30 mg dm−3 in 0.1 M sodium sulfate. Cyclic voltammetry of a boron doped diamond (BDD) electrode in aqueous SDBS solutions exhibited oxidation current densities at very positive potentials; however, solutions of monomers at concentrations <CMC gave rise to higher current densities than in higher concentration solutions that formed micelles. Galvanostatic electrolyses, with samples analyzed for Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), were performed in an electrolytic flow cell without separator, operating in batch recycle mode, using solutions containing SDBS at initial concentrations of 25 and 250 ppm. SDBS in basic media (pH = 12) exhibited lower TOC removal rates than in acidic or neutral solutions, due to concurrent oxidation of dissolved carbonates at potentials less positive than required for water oxidation, as evident in cyclic voltammograms. Decreasing the [electrolyte]/[surfactant] ratio from 200 to 10 increased TOC removal rates. For solutions containing monomers, TOC removal rates also increased with flow rate in the second part of the electrolysis, corresponding to reaction of smaller, fragmented organic compounds. When COD removal from a solution containing SDBS micelles was mass transport controlled, current efficiencies were constant at ca. 50%, due to dimerisation of hydroxyl radical to H2O2 and its oxidation to dioxygen.
引用
收藏
页码:1337 / 1344
页数:7
相关论文
共 50 条
  • [11] Electrochemical Oxidation of Sulfonamides with Boron-Doped Diamond and Pt Anodes
    Li, Hongna
    Jiang, Huan
    Liu, Chong
    Zhu, Changxiong
    Zhu, Xiuping P.
    CHEMISTRYOPEN, 2019, 8 (12): : 1421 - 1428
  • [12] Electrochemical decolourisation of dispersed indigo on boron-doped diamond anodes
    Bechtold, Thomas
    Turcanu, Aurora
    Schrott, Wolfgang
    DIAMOND AND RELATED MATERIALS, 2006, 15 (10) : 1513 - 1519
  • [13] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    E. Weiss
    C. Sáez
    K. Groenen-Serrano
    P. Cañizares
    A. Savall
    M. A. Rodrigo
    Journal of Applied Electrochemistry, 2008, 38 : 93 - 100
  • [14] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    Weiss, E.
    Sáez, C.
    Groenen-Serrano, K.
    Cañizares, P.
    Savall, A.
    Rodrigo, M.A.
    Journal of Applied Electrochemistry, 2008, 38 (01): : 93 - 100
  • [15] Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes
    Louhichi, B.
    Ahmadi, M. F.
    Bensalah, N.
    Gadri, A.
    Rodrigo, M. A.
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 158 (2-3) : 430 - 437
  • [16] Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes
    Cañizares, P
    Lobato, J
    Paz, R
    Rodrigo, MA
    Sáez, C
    WATER RESEARCH, 2005, 39 (12) : 2687 - 2703
  • [17] Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes
    Weiss, E.
    Saez, C.
    Groenen-Serrano, K.
    Canizares, P.
    Savall, A.
    Rodrigo, M. A.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2008, 38 (01) : 93 - 100
  • [18] Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes
    Jiang, Huan
    Dang, Chenyuan
    Liu, Wen
    Wang, Ting
    CHEMOSPHERE, 2020, 248 (248)
  • [19] Electrochemical mineralization of dimethyl sulfoxide on boron-doped diamond electrodes
    Natsui, Keisuke
    Hosomi, Tomoko
    Ikemiya, Norihito
    Einaga, Yasuaki
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2019, 15
  • [20] Electrochemical degradation and mineralization of tetracycline on a boron-doped diamond electrode
    M. D. Vedenyapina
    D. A. Borisova
    E. D. Strel’tsova
    A. K. Rakishev
    A. A. Vedenyapin
    Russian Chemical Bulletin, 2014, 63 : 1843 - 1847