On the characterization of D-preinvex functions

被引:0
|
作者
Taiyong Li
Min Huang
机构
[1] Zhejiang A & F University,Tianmu College
[2] Zhejiang A & F University,School of Economy and Management
来源
Journal of Inequalities and Applications | / 2012卷
关键词
-preinvex functions; -semistrictly preinvex functions; -strictly preinvex functions; semicontinuity;
D O I
暂无
中图分类号
学科分类号
摘要
In (J. Inequal. Appl. 2006:9532, 2006), Peng and Zhu discussed interrelations among D-preinvexity, D-semistrict preinvexity, and D-strict preinvexity for vector-valued functions. In this note, we show that the same results or even more general ones can be obtained under weaker assumptions. We also give a new characterization of D-preinvexity and D-semistrict preinvexity under mild conditions.
引用
收藏
相关论文
共 50 条
  • [21] General Exponentially Preinvex Functions And Their Properties
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 65 - 76
  • [22] SOME PROPERTIES OF EXPONENTIALLY PREINVEX FUNCTIONS
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (05): : 941 - 955
  • [23] Some characterizations of strongly preinvex functions
    Noor, MA
    Noor, KN
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) : 697 - 706
  • [24] Inequalities For Generalized Preinvex Functions I
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Iftikhar, Sabah
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 236 - 247
  • [25] Remark on cone semistrictly preinvex functions
    X. J. Long
    Z. Y. Peng
    B. Zeng
    Optimization Letters, 2009, 3
  • [26] Explicitly B-preinvex functions
    Yang, XM
    Yang, XQ
    Teo, KL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (01) : 25 - 36
  • [27] Integral Inequalities for Generalized Preinvex Functions
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Safdar, Farhat
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (10): : 77 - 91
  • [28] Nonlinear programming with E-preinvex and local E-preinvex functions
    Fulga, C.
    Preda, V.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 192 (03) : 737 - 743
  • [29] Remark on cone semistrictly preinvex functions
    Long, X. J.
    Peng, Z. Y.
    Zeng, B.
    OPTIMIZATION LETTERS, 2009, 3 (03) : 337 - 345
  • [30] The Sugeno integral with respect to α-preinvex functions
    Liao, Jiagen
    Wu, Shanhe
    Du, Tingsong
    FUZZY SETS AND SYSTEMS, 2020, 379 : 102 - 114