Divisibility of zeta functions of curves in a covering

被引:0
|
作者
Y. Aubry
M. Perret
机构
[1] Université de Caen,Laboratoire de Mathématiques Nicolas Oresme, C.N.R.S.
[2] Ecole Normale Supérieure de Lyon,UMR 6139
来源
Archiv der Mathematik | 2004年 / 82卷
关键词
11G20; 14G10; 14G15; 14K30.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove, as an analogy of a conjecture of Artin, that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ Y \rightarrow X $ \end{document} is a finite flat morphism between two singular reduced absolutely irreducible projective algebraic curves defined over a finite field, then the numerator of the zeta function of X divides that of Y in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \mathbb{Z}[T] $ \end{document} . Then, we give some interpretations of this result in terms of semi-abelian varieties.
引用
收藏
页码:205 / 213
页数:8
相关论文
共 50 条