We prove, as an analogy of a conjecture of Artin, that if
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ Y \rightarrow X $
\end{document}
is a finite flat morphism between two singular reduced absolutely irreducible projective
algebraic curves defined over a finite field, then the numerator of the zeta function
of X divides that of Y
in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \mathbb{Z}[T] $
\end{document}
. Then, we give some interpretations of this result in terms of
semi-abelian varieties.