Quantum computation of zeta functions of curves

被引:12
|
作者
Kedlaya, KS [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
quantum computation; zeta functions; class groups; algebraic curves; finite fields; cyclic resultants;
D O I
10.1007/s00037-006-0204-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We exhibit a quantum algorithm for determining the zeta function of a genus g curve over a finite field Fq, which is polynomial in g and log(q). This amounts to giving an algorithm to produce provably random elements of the class group of a curve, plus a recipe for recovering a Weil polynomial from enough of its cyclic resultants. The latter effectivizes a result of Fried in a restricted setting.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条