Geodesic complexity for non-geodesic spaces

被引:0
|
作者
Donald M. Davis
机构
[1] Lehigh University,Department of Mathematics
关键词
Geodesic; Configuration space; Topological robotics; 53C22; 55R80; 55M30; 68T40;
D O I
暂无
中图分类号
学科分类号
摘要
We define the notion of near-geodesic between points of a metric space when no geodesic exists, and use this to extend Recio-Mitter’s notion of geodesic complexity to non-geodesic spaces. This has potential application to topological robotics. We determine explicit near-geodesics and geodesic complexity in a variety of cases.
引用
收藏
相关论文
共 50 条
  • [1] Geodesic complexity for non-geodesic spaces
    Davis, Donald M.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [2] NON-GEODESIC DISKS EMBEDDED IN TEICHMULLER-SPACES
    NAG, S
    AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (02) : 399 - 408
  • [3] Non-Geodesic Incompleteness in Poincare Gauge Gravity
    Ruiz Cembranos, Jose Alberto
    Gigante Valcarcel, Jorge
    Torralba, Francisco J. Maldonado
    ENTROPY, 2019, 21 (03):
  • [4] EQUATION OF MOTION FOR NON-GEODESIC LABORATORY BODIES
    NORDTVEDT, K
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (04) : 269 - 276
  • [5] Non-geodesic timelike observers and the ultralocal limit
    Saadati, Reza
    Valsan, Luca
    Faraoni, Valerio
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [6] A non-geodesic analogue of Reshetnyak's majorization theorem
    Toyoda, Tetsu
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2023, 11 (01):
  • [7] Non-geodesic filament winding on generic shells of revolution
    Koussios, S
    Bergsma, OK
    Mitchell, G
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2005, 219 (L1) : 25 - 35
  • [8] Experimental measurement of the geometric phase of non-geodesic circles
    Voitiv, Andrew A.
    LusK, Mark T.
    Siemens, Mark E.
    OPTICS LETTERS, 2023, 48 (10) : 2680 - 2683
  • [9] On the possibility of non-geodesic motion of massless spinning tops
    Armaza, Cristobal
    Hojman, Sergio A.
    Koch, Benjamin
    Zalaquett, Nicolas
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (14)
  • [10] Non-geodesic particle trajectories with vanishing higher accelerations
    Garay, Oscar J.
    Pauley, Michael
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 342 - 351