A non-geodesic analogue of Reshetnyak's majorization theorem

被引:2
|
作者
Toyoda, Tetsu [1 ]
机构
[1] Kogakuin Univ, 2665-1, Nakano, Hachioji, Tokyo 1920015, Japan
来源
关键词
Reshetnyak's majorization theorem; CAT(kappa) space; Cycl(n)(kappa) space; boxed times-inequalities; weighted quadruple inequalities; CURVATURE;
D O I
10.1515/agms-2022-0151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any real number ? and any integer n = 4, the Cycl(n)(?) condition introduced by Gromov (CAT (?)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100-140, 299-300) is a necessary condition for a metric space to admit an isometric embedding into a CAT(?) space. For geodesic metric spaces, satisfying the Cycl(4)(?) condition is equivalent to being CAT(?). In this article, we prove an analogue of Reshetnyak's majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl(4)(?) condition. It follows from our result that for general metric spaces, the Cycl(4)(?) condition implies the Cycl(n)(?) conditions for all inte-gers n=5.
引用
收藏
页数:22
相关论文
共 50 条