BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets

被引:0
|
作者
Javad Hassannataj Joloudari
Sadiq Hussain
Mohammad Ali Nematollahi
Rouhollah Bagheri
Fatemeh Fazl
Roohallah Alizadehsani
Reza Lashgari
Ashis Talukder
机构
[1] University of Birjand,
[2] Dibrugarh University,undefined
[3] Fasa University,undefined
[4] Ferdowsi University of Mashhad,undefined
[5] Deakin University,undefined
[6] Shahid Beheshti University,undefined
[7] Australian National University,undefined
[8] Khulna University,undefined
关键词
COVID-19; BERT; Deep learning; Sentiment analysis; Natural language processing; Tweets;
D O I
暂无
中图分类号
学科分类号
摘要
The COVID-19 pandemic has led to the emergence of social media platforms as crucial channels for the dissemination of information and public opinion. Comprehending the sentiment conveyed in tweets on COVID-19 is of paramount importance for individuals involved in policymaking, crisis management, and public health administration. This study seeks to conduct a comprehensive review of the current BERT and deep CNN models utilized in sentiment analysis of COVID-19 tweets. Additionally, the study aims to propose potential future research directions for the development of a BERT model that is both lightweight and high quality. The BERT model acquires contextual representations of words and effectively captures the intricate semantics of tweets related to COVID-19, whereas the deep CNN captures the hierarchical organization of the tweet embeddings. The performance of the model is exceptional, exceeding the current sentiment analysis methods for tweets related to COVID-19. Our study involves a comprehensive analysis of vast COVID-19 tweet datasets, wherein we establish the efficacy of the BERT-deep CNN models in precisely categorizing the sentiment of COVID-19 tweets in real time. The outcomes of the research offer significant perspectives on the public's attitudes, supporting decision-makers in comprehending the general viewpoint, detecting disinformation, and guiding emergency response tactics. Additionally, this study serves to enhance the progress of sentiment analysis methodologies within the realm of public health emergencies and establishes a standard for forthcoming investigations in the sentiment analysis of social media data pertaining to COVID-19.
引用
收藏
相关论文
共 50 条
  • [31] Analysing sentiment change detection of Covid-19 tweets
    Theocharopoulos, Panagiotis C.
    Tsoukala, Anastasia
    Georgakopoulos, Spiros V.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21433 - 21443
  • [32] Analysing sentiment change detection of Covid-19 tweets
    Panagiotis C. Theocharopoulos
    Anastasia Tsoukala
    Spiros V. Georgakopoulos
    Sotiris K. Tasoulis
    Vassilis P. Plagianakos
    Neural Computing and Applications, 2023, 35 : 21433 - 21443
  • [33] COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques
    Jalil, Zunera
    Abbasi, Ahmed
    Javed, Abdul Rehman
    Badruddin Khan, Muhammad
    Abul Hasanat, Mozaherul Hoque
    Malik, Khalid Mahmood
    Saudagar, Abdul Khader Jilani
    FRONTIERS IN PUBLIC HEALTH, 2022, 9
  • [34] Leveraging Tweets for Artificial Intelligence Driven Sentiment Analysis on the COVID-19 Pandemic
    Alkhaldi, Nora A.
    Asiri, Yousef
    Mashraqi, Aisha M.
    Halawani, Hanan T.
    Abdel-Khalek, Sayed
    Mansour, Romany F.
    HEALTHCARE, 2022, 10 (05)
  • [35] NLP and Machine Learning for Sentiment Analysis in COVID-19 Tweets: A Comparative Study
    Shaik, Shahedhadeennisa
    Chaitra, S.P.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [36] Tweets by People With Arthritis During the COVID-19 Pandemic: Content and Sentiment Analysis
    Berkovic, Danielle
    Ackerman, Ilana N.
    Briggs, Andrew M.
    Ayton, Darshini
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)
  • [37] Sentiment analysis and causal learning of COVID-19 tweets prior to the rollout of vaccines
    Zhang, Qihuang
    Yi, Grace Y.
    Chen, Li-Pang
    He, Wenqing
    PLOS ONE, 2023, 18 (02):
  • [38] Sentiment Analysis of Tweets Related to SUS Before and During COVID-19 pandemic
    Silva, Henrique
    Araujo, Danilo
    Dantas, Jamilson
    Andrade, Ermeson
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (01) : 6 - 13
  • [39] Sentiment Analysis of COVID-19 Tweets: Impact of Pre-processing Step
    Ayadi, Rami
    R.Shahin, Osama
    Ghorbel, Osama
    Alanazi, Rayan
    Saidi, Anouar
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (03): : 206 - 211
  • [40] Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets
    Motwakel, Abdelwahed
    Alshahrani, Hala J.
    Hassan, Abdulkhaleq Q. A.
    Tarmissi, Khaled
    Mehanna, Amal S.
    Yaseen, Ishfaq
    Abdelmageed, Amgad Atta
    Mahzari, Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4767 - 4783