On equivalent bases in Banach spaces

被引:0
|
作者
Bilalov B.T. [1 ]
Muradov T.R. [1 ]
机构
[1] Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
关键词
Hilbert Space; Banach Space; Basis Property; Close System; Fredholm Operator;
D O I
10.1007/s11253-007-0040-1
中图分类号
学科分类号
摘要
We present several generalizations of the classical Bari theorem on the Riesz basis property of close systems in Hilbert spaces to Banach spaces. We introduce the corresponding definitions and formulate theorems on the basis property of close systems in Banach spaces. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:615 / 619
页数:4
相关论文
共 50 条
  • [31] ON PERFECTLY HOMOGENEOUS BASES IN BANACH SPACES
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (04) : 265 - &
  • [32] CONDITIONS EQUIVALENT TO SUPERREFLEXIVITY IN BANACH SPACES
    BRUNEL, A
    SUCHESTON, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (20): : 993 - +
  • [33] Characterization of greedy bases in Banach spaces
    Berna, Pablo M.
    Blasco, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2017, 215 : 28 - 39
  • [34] A REMARK ON BASES AND REFLEXIVITY IN BANACH SPACES
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (01) : 74 - &
  • [35] b-BASES IN BANACH SPACES
    Ismailov, Miqdad I.
    Jabrayilova, Afat N.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2011, 35 (43): : 53 - 58
  • [36] Bases in spaces of multilinear forms over Banach spaces
    Dimant, V
    Zalduendo, I
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 548 - 566
  • [37] FRAMES AND RIESZ BASES FOR BANACH SPACES, AND BANACH SPACES OF VECTOR-VALUED SEQUENCES
    Cho, Kyugeun
    Kim, Ju Myung
    Lee, Han Ju
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 172 - 193
  • [38] BASES IN THE SPACES OF HOMOGENEOUS POLYNOMIALS AND MULTILINEAR OPERATORS ON BANACH SPACES
    Ji, Donghai
    Bu, Qingying
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 1829 - 1842
  • [39] FRACTAL BASES FOR BANACH SPACES OF SMOOTH FUNCTIONS
    Navascues, M. A.
    Viswanathan, P.
    Chand, A. K. B.
    Sebastian, M. V.
    Katiyar, S. K.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (03) : 405 - 419
  • [40] PROJECTIONS ON BANACH-SPACES WITH SYMMETRIC BASES
    CASAZZA, PG
    LIN, BL
    STUDIA MATHEMATICA, 1974, 52 (02) : 189 - 193