Noncommutative solutions of the d'alembert equation

被引:0
|
作者
Lisitsyn Ya.V. [1 ]
Shapovalov A.V. [1 ]
机构
关键词
Basis Function; Complete System; Linear Differential Equation; Symmetry Algebra; Dilation Operator;
D O I
10.1007/BF02510610
中图分类号
学科分类号
摘要
All the subalgebras of first-order symmetry operators for the d'Alembert equation, generating the bases of solutions in the method of noncommutative integration of linear differential equations, which cannot be constructed in the method of separation of variables, are found. These bases themselves are then given in explicit form. The complete systems of solutions of the d'Alembert equation, determined by noncommutative sets of first-order symmetry operators, are thereby classified. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:528 / 533
页数:5
相关论文
共 50 条
  • [31] D'ALEMBERT'S FUNCTIONAL EQUATION ON COMPACT GROUPS
    Szekelyhidi, Laszlo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02): : 221 - 226
  • [32] Conditionally invariant q-d'Alembert equation
    Dobrev, VK
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 16 - 18
  • [33] D'Alembert's functional equation on topological monoids
    Davison, Thomas M. K.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 75 (1-2): : 41 - 66
  • [34] On the Galilean covariance of the d'Alembert equation for acoustic phenomena
    Caruso, Francisco
    Oguri, Vitor
    Silveira, Felipe
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2024, 45 (01) : 45 - 47
  • [35] D’Alembert Formula for Diffusion-Wave Equation
    A. V. Pskhu
    Lobachevskii Journal of Mathematics, 2023, 44 : 644 - 652
  • [36] The d’Alembert–Lagrange equation exploited on a Riemannian manifold
    Xiaobo Liu
    R. L. Huston
    C. Q. Liu
    Multibody System Dynamics, 2011, 25 : 411 - 427
  • [37] D'Alembert Formula for Diffusion-Wave Equation
    Pskhu, A. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 644 - 652
  • [38] d’Alembert’s other functional equation on monoids with an involution
    Bruce Ebanks
    Henrik Stetkær
    Aequationes mathematicae, 2015, 89 : 187 - 206
  • [39] Explicit solutions of families of generalized D'Alembert equations
    Dattoli, G
    Lorenzutta, S
    Ricci, PE
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (07) : 515 - 519
  • [40] The superstability of d'Alembert's functional equation on the Heisenberg group
    Bouikhalene, B.
    Elqorachi, E.
    Rassias, J. M.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 105 - 109