Mathematical modeling and parameters estimation of anaerobic fermentation processes

被引:0
|
作者
I. S. Simeonov
机构
[1] Institute of Microbiology,
[2] Bulgarian Academy of Sciences,undefined
[3] Research Group “Mathematical modeling and computer sciences” Acad.G. Bonchev St.,undefined
[4] Block 26,undefined
[5] Sofia 1113,undefined
[6] Bulgaria,undefined
来源
Bioprocess Engineering | 1999年 / 21卷
关键词
Fermentation; Dynamic Behavior; Organic Pollutant; Automatic Control; Static Characteristic;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper some problems of the mathematical modeling of anaerobic (methane) fermentation of animal waste in stirred tank bioreactors are considered. Laboratory experiments are carried out with highly concentrated organic pollutants and transient step responses of the control output for continuous methane fermentation are obtained. The dynamic behavior of this process is described by sets of deterministic nonlinear differential equations from 2nd order with different structures. Static characteristics are obtained with these models analytically. Investigations by computer simulation of the methane fermentation are performed with the aim to chose appropriate models for automatic control system design of this process.
引用
收藏
页码:377 / 381
页数:4
相关论文
共 50 条
  • [21] Mathematical Modeling, Parametric Estimation, and Operational Control for Natural Gas Sweetening Processes
    Selvan, K. Karthigai
    Panda, Rames C.
    CHEMBIOENG REVIEWS, 2018, 5 (01): : 57 - 74
  • [22] INFLUENCE OF DIFFERENT ANAEROBIC STORAGE CONDITIONS ON FERMENTATION PROCESSES
    HONIG, H
    LANDBAUFORSCHUNG VOLKENRODE, 1970, 20 (01): : 40 - &
  • [23] Kinetic models for anaerobic fermentation processes-A review
    Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka, Nigeria
    Am. J. Biochem. Biotechnol., 3 (132-148):
  • [24] Mathematical modeling of demographic processes
    Dmitriev V.I.
    Kurkina E.S.
    Computational Mathematics and Modeling, 2009, 20 (1) : 51 - 64
  • [25] Mathematical modeling of microcirculatory processes
    Shvab, Irina V.
    Nimaev, Vadim V.
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 531 - 533
  • [26] Mathematical modeling for developmental processes
    Iwasa, Yoh
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2023, 65 (05) : 272 - 281
  • [27] Mathematical Modeling of Regenerative Processes
    Chara, Osvaldo
    Tanaka, Elly M.
    Brusch, Lutz
    MECHANISM OF REGENERATION, 2014, 108 : 283 - 317
  • [28] Mathematical modeling of cyclic processes
    Sokovnin, O. M.
    Zagoskina, N. V.
    Zagoskin, S. N.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2010, 44 (04) : 389 - 398
  • [29] Mathematical Modeling of Biological Processes
    Barbarossa, Maria Vittoria
    ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4): : 719 - 719
  • [30] Mathematical modeling of cyclic processes
    O. M. Sokovnin
    N. V. Zagoskina
    S. N. Zagoskin
    Theoretical Foundations of Chemical Engineering, 2010, 44 : 389 - 398