Multiscale analysis in Sobolev spaces on bounded domains

被引:0
|
作者
Holger Wendland
机构
[1] University of Oxford,Mathematical Institute
来源
Numerische Mathematik | 2010年 / 116卷
关键词
65J10; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We study a multiscale scheme for the approximation of Sobolev functions on bounded domains. Our method employs scattered data sites and compactly supported radial basis functions of varying support radii at scattered data sites. The actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. Convergence theorems for the scheme are proven, and it is shown that the condition numbers of the linear systems at each level are independent of the level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points on a bounded domain.
引用
收藏
页码:493 / 517
页数:24
相关论文
共 50 条
  • [31] Variable Exponent Sobolev Spaces and Regularity of Domains
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7304 - 7319
  • [32] HERZ-TYPE SOBOLEV SPACES ON DOMAINS
    Drihem, D.
    MATEMATICHE, 2022, 77 (02): : 229 - 263
  • [33] Dirichlet spaces of domains bounded by quasicircles
    Radnell, David
    Schippers, Eric
    Staubach, Wolfgang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [34] HP SPACES ON BOUNDED SYMMETRIC DOMAINS
    HAHN, KT
    MITCHELL, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 146 : 521 - &
  • [35] Density of bounded maps in Sobolev spaces into complete manifolds
    Pierre Bousquet
    Augusto C. Ponce
    Jean Van Schaftingen
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 2261 - 2301
  • [36] Density of bounded maps in Sobolev spaces into complete manifolds
    Bousquet, Pierre
    Ponce, Augusto C.
    Van Schaftingen, Jean
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2261 - 2301
  • [37] Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics
    Nardi, Giacomo
    Peyre, Gabriel
    Vialard, Francois-Xavier
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (01): : 238 - 274
  • [38] Defect of compactness for Sobolev spaces on manifolds with bounded geometry
    Skrzypczak, Leszek
    Tintarev, Cyril
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (04) : 1665 - 1695
  • [39] Functions of bounded higher variation in the fractional Sobolev spaces
    Tu, Qiang
    Wu, Chuanxi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)
  • [40] Sobolev and bounded variation functions on metric measure spaces
    Ambrosio, Luigi
    Ghezzi, Roberta
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 211 - 273