On a multi-dimensional Poissonian pair correlation concept and uniform distribution

被引:0
|
作者
Aicke Hinrichs
Lisa Kaltenböck
Gerhard Larcher
Wolfgang Stockinger
Mario Ullrich
机构
[1] Johannes Kepler Universität Linz,Institut für Finanzmathematik und Angewandte Zahlentheorie
[2] Johannes Kepler Universität Linz,Institut für Analysis
[3] University of Oxford,undefined
[4] Andrew Wiles Building,undefined
[5] Radcliffe Observatory Quarter,undefined
来源
关键词
Uniform distribution; Pair correlation of sequences; Additive energy; 11K06; 11K31;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present article is to introduce a concept which allows to generalise the notion of Poissonian pair correlation, a second-order equidistribution property, to higher dimensions. Roughly speaking, in the one-dimensional setting, the pair correlation statistics measures the distribution of spacings between sequence elements in the unit interval at distances of order of the mean spacing 1 / N. In the d-dimensional case, of course, the order of the mean spacing is 1/N1d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N^{\frac{1}{d}}$$\end{document}, and—in our concept—the distance of sequence elements will be measured by the supremum-norm. Additionally, we show that, in some sense, almost all sequences satisfy this new concept and we examine the link to uniform distribution. The metrical pair correlation theory is investigated and it is proven that a class of typical low-discrepancy sequences in the high-dimensional unit cube do not have Poissonian pair correlations, which fits the existing results in the one-dimensional case.
引用
收藏
页码:333 / 352
页数:19
相关论文
共 50 条
  • [21] Partitioning multi-dimensional sets in a small number of "uniform" parts
    Alon, Noga
    Newman, Ilan
    Shen, Alexander
    Tardos, Gabor
    Vereshchagin, Nikolai
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 134 - 144
  • [22] Analysis of Multi-Dimensional Correlation Functions in the Solar Wind
    Smith, Charles W.
    Vasquez, Bernard J.
    Stemkowski, Matthew R.
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 13), 2013, 1539 : 271 - 274
  • [23] Simulating multi-dimensional lattices with correlation: A case study
    Otamendi, J
    Hon, MT
    SIMULATION IN INDUSTRY, 2004, : 220 - 229
  • [24] The concept of mindfulness in information systems research: a multi-dimensional analysis
    Dernbecher, Sabine
    Beck, Roman
    EUROPEAN JOURNAL OF INFORMATION SYSTEMS, 2017, 26 (02) : 121 - 142
  • [25] Measuring poverty in Britain as a multi-dimensional concept, 1991 to 2003
    Tomlinson, Mark
    Walker, Robert
    Williams, Glenn
    JOURNAL OF SOCIAL POLICY, 2008, 37 : 597 - 620
  • [26] Visual event detection using multi-dimensional concept dynamics
    Ebadollahi, Shahram
    Xie, Lexing
    Chang, Shih-Fu
    Smith, John R.
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 881 - 884
  • [27] Extending mixed embeddedness to a multi-dimensional concept of transnational entrepreneurship
    Sakura Yamamura
    Paul Lassalle
    Comparative Migration Studies, 10
  • [28] MULTI-DIMENSIONAL MODELING Formal Specification and Verification of the Hierarchy Concept
    Salem, Ali
    Ghozzi, Faiza
    Ben-Abdallah, Hanene
    ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL DISI: DATABASES AND INFORMATION SYSTEMS INTEGRATION, 2008, : 317 - +
  • [30] Multi-dimensional sequential pattern mining based on concept lattice
    Jin, Yang
    Zuo, Wanli
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 702 - 710