On a multi-dimensional Poissonian pair correlation concept and uniform distribution

被引:0
|
作者
Aicke Hinrichs
Lisa Kaltenböck
Gerhard Larcher
Wolfgang Stockinger
Mario Ullrich
机构
[1] Johannes Kepler Universität Linz,Institut für Finanzmathematik und Angewandte Zahlentheorie
[2] Johannes Kepler Universität Linz,Institut für Analysis
[3] University of Oxford,undefined
[4] Andrew Wiles Building,undefined
[5] Radcliffe Observatory Quarter,undefined
来源
关键词
Uniform distribution; Pair correlation of sequences; Additive energy; 11K06; 11K31;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present article is to introduce a concept which allows to generalise the notion of Poissonian pair correlation, a second-order equidistribution property, to higher dimensions. Roughly speaking, in the one-dimensional setting, the pair correlation statistics measures the distribution of spacings between sequence elements in the unit interval at distances of order of the mean spacing 1 / N. In the d-dimensional case, of course, the order of the mean spacing is 1/N1d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N^{\frac{1}{d}}$$\end{document}, and—in our concept—the distance of sequence elements will be measured by the supremum-norm. Additionally, we show that, in some sense, almost all sequences satisfy this new concept and we examine the link to uniform distribution. The metrical pair correlation theory is investigated and it is proven that a class of typical low-discrepancy sequences in the high-dimensional unit cube do not have Poissonian pair correlations, which fits the existing results in the one-dimensional case.
引用
收藏
页码:333 / 352
页数:19
相关论文
共 50 条
  • [1] On a multi-dimensional Poissonian pair correlation concept and uniform distribution
    Hinrichs, Aicke
    Kaltenboeck, Lisa
    Larcher, Gerhard
    Stockinger, Wolfgang
    Ullrich, Mario
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 333 - 352
  • [2] Poissonian pair correlation for directions in multi-dimensional affine lattices and escape of mass estimates for embedded horospheres
    Kim, Wooyeon
    Marklof, Jens
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (01) : 218 - 246
  • [3] On higher dimensional Poissonian pair correlation
    Bera, Tanmoy
    Das, Mithun Kumar
    Mukhopadhyay, Anirban
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [4] Poissonian pair correlation for higher dimensional real sequences
    Bera, Tanmoy
    Das, Mithun Kumar
    Mukhopadhyay, Anirban
    MATHEMATIKA, 2024, 70 (04)
  • [5] MULTI-MODE MULTI-DIMENSIONAL SYSTEMS WITH POISSONIAN SEQUENCING
    Verriest, Erik I.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2009, 9 (01) : 77 - 102
  • [6] Poissonian pair correlation and discrepancy
    Steinerberger, Stefan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (05): : 1167 - 1178
  • [7] Medicalisation: A Multi-dimensional Concept
    Ballard K.
    Elston M.A.
    Social Theory & Health, 2005, 3 (3) : 228 - 241
  • [8] Multi-Dimensional Correlation Steganalysis
    Farhat, Farshid
    Diyanat, Abolfazl
    Ghaemmaghami, Shahrokh
    Aref, Mohammad-Reza
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [9] Poissonian pair correlation in higher dimensions
    Steinerberger, Stefan
    JOURNAL OF NUMBER THEORY, 2020, 208 : 47 - 58
  • [10] FAMILY INTEGRATION - A MULTI-DIMENSIONAL CONCEPT
    DAGER, EZ
    MCCULLOUGH, BC
    INTERNATIONAL JOURNAL OF SOCIOLOGY OF THE FAMILY, 1982, 12 (02) : 173 - 187